
Flink SQL DDL
Author 2

Motivation 2

Usage Example 2

Goals 4

DDL Grammar Design 4
Table DDL 4
View DDL 6
Type DDL 6
Library DDL 6
Function DDL 6

Proposed Changes 7
Shared Changes for all DDLs 7

Extending Calcite Parser 7
MultiQueries Support 8

Flink Table Environment 8
Table DDL 8
View DDL 8
Type DDL 8
Library DDL 8

Calcite Changes 9
Loading Libraries in Flink 9

Function DDL 9
SQL client integration 10

Overview 10
DROP Statement 11
SessionContext Persistence 11

Discussion 12
Side effect of DDLs 12
DROPPING non-DDL created entities 12

Test Plan 12

Implementation Plan 12
Table DDL 12
View DDL 12

Type DDL 13
Library/Function DDL 13

Compatibility, Deprecation, and Migration Plan 13

Author
● Shuyi Chen (suez1224@gmail.com)
● Fabian Hueske (fabian@data-artisans.com)
● Timo Walther (timo@data-artisans.com)
● Rong Rong (walterddr@gmail.com)

Motivation
Current Flink SQL API support only DML (e.g. SELECT and INSERT statements). With only
DML, Flink SQL API users still need to define/create table sources and sinks
programmatically in Java/Scala. Also, if users want to create View, User-Defined Type or
load an external UDF to use within SQL, they need to do so programmatically in Java/Scala
as well. These make the Flink SQL API less useful as we should enable the users to define all
database schemas/types and etc., all within SQL. This motivates the addition of SQL DDL
support in Flink. With DDL support in Flink,

● Users can define/alter/delete table sources and sinks using SQL in Flink
● Users can define/alter/delete view (virtual tables) using SQL in Flink
● Users can define/replace/delete user defined types using SQL in Flink
● Users can use SQL to load external functions and use it as UDF in Flink SQL.

Also, In [FLIP-24], a SQL client is proposed to allow Flink users to use Flink SQL without any
IDE or programming effort. However, the current implementation does not allow dynamical
creation of table, type or functions within SQL, and users need to put those configurations
statically as parameters or configuration files passing into the SQL client before startup.
With SQL DDL support, we can extend the SQL client to dynamically create/alter/delete
table/view/type/functions/etc. within the command line session.

Usage Example
The following SQL statements use DDL to define a source Kafka table in the default catalog,
and Cassandra sink table in the default catalog, a UDAF from a Jar library located in HDFS,

mailto:suez1224@gmail.com
mailto:fabian@data-artisans.com
mailto:timo@data-artisans.com
mailto:walterddr@gmail.com
https://cwiki.apache.org/confluence/display/FLINK/FLIP-24+-+SQL+Client

and finally does a SQL query from the Kafka table and streams the output to the Cassandra
table.

CREATE SOURCE TABLE Kafka10SourceTable (
intField INTEGER,
stringField VARCHAR(128) COMMENT ‘User IP address’,
longField BIGINT,
rowTimeField TIMESTAMP
TIMESTAMPS FROM ‘longField’
WATERMARKS PERIODIC-BOUNDED WITH DELAY '60’

)
COMMENT ‘Kafka Source Table of topic user_ip_address’
WITH (

connector.type=’kafka’,
connector.property-version=’1’,
connector.version=’0.10’,
connector.topic=‘test-kafka-topic’,
connector.startup-mode = ‘latest-offset’
connector.specific-offset = ‘offset’
format.type=’json’
format.property-version = ‘1’
format.version=’1’
format.derive-schema=’true’

)

CREATE SINK TABLE CassandraSinkTable (
newIntField INTEGER,
stringField VARCHAR(128)

)
WITH (

connector.type=’cassandra’,
connector.property-version=’1’,
connector.version=’3.0.0’,
connector.contact-points=‘127.0.0.1’,
connector.cql =‘INSERT INTO testNamespace.testTable (newIntField, stringField)
VALUES(?,?)’

)

CREATE LIBRARYmyLib AS ‘HDFS:///users/testUser1/flink-udf/myudf-0.1.jar’;

CREATE FUNCTIONmyUDAFunc AS ‘com.test.myUDAF’ LIBRARYmyLib;

INSERT INTO CassandraSinkTable SELECTmyUDAFunc(intField) AS newIntField,
stringField FROM Kafka10SourceTable GROUP BY TUMBLE(rowtimeField, INTERVAL ‘5’
MINUTE), stringField;

Goals
We would like to achieve the following goals in this FLIP.

● Provide a basic design and framework for Flink SQL DDL.
● Add Table DDL support.
● Add View DDL support.
● Add Type DDL support.
● Add Library DDL support.
● Add Function DDL support.
● Add multi-queries SQL support.
● Integrate Flink SQL DDL with SQL client module.

DDL Grammar Design
We will extend the Calcite core parser in Flink to add DDL support. Below are the initial
proposed grammar.

Table DDL
createTableStatement:

CREATE [SOURCE | SINK] TABLE [IF NOT EXISTS] name
['(' tableElement [, tableElement]* ')']
[COMMENT table_comment]
[WITH ‘(‘ name=value [, name=value]* ‘)’]

Name:
[[catalogName .] schemaName .] tableName

tableElement:
columnName fieldType
[COMMENT column_comment]
[rowTimeDefinition|procTimeDefinition|fromFieldDefinition]
[WITH COLPROPERTIES ‘(‘ name=value [, name=value]* ‘)’]

| tableConstraint

fromFieldDefinition:
FROM originalFieldName

procTimeDefinition:
PROCTIME

rowTimeDefinition:
TIMESTAMP

{
FROM-SOURCE

|
FROM ‘fieldName’

|
CUSTOM,
‘(‘ CLASS = extractorClassName ‘)’

}
WATERMARKS

{
PERIODIC-ASCENDING

|
PERIODIC-BOUNDEDWITH DELAY ‘delay’

|
FROM-SOURCE

|
CUSTOM,
‘(‘ CLASS=strategyClassName ‘)’

}

fieldType:
{ simpleType
| ROW ‘(‘ name AS fieldType [, name AS fieldType]* ‘)’
| MAP ‘(‘ simpleType , fieldType ‘)’
| ARRAY ‘(‘ fieldType ‘)’
} [[NOT] NULL]

tableConstraint:
[CONSTRAINT name]
{
CHECK '(' expression ')'

| PRIMARY KEY '(' columnName [, columnName]* ')'
| UNIQUE '(' columnName [, columnName]* ')'
}

dropTableStatement:
DROP TABLE name [IF EXISTS]

View DDL
createViewStatement:

CREATE VIEW [IF NOT EXISTS] name
['(' columnName [COMMENT column_comment], ... ')']
[COMMENT view_comment]
[WITH ‘(‘ name=value [, name=value]* ‘)’]

dropViewStatement:
DROP VIEW name [IF EXISTS]

Type DDL
createTypeStatement:

CREATE [OR REPLACE] TYPE name AS fieldType

dropTypeStatement:
DROP TYPE [IF EXISTS] name

Library DDL
createLibraryStatement:

CREATE [OR REPLACE] LIBRARY
name
AS 'library-path'
[DEPENDS 'support-path' [, 'support-path']*]

dropLibraryStatement:
DROP LIBRARY [IF EXISTS] name

Function DDL
createFunctionStatement:

CREATE [OR REPLACE] FUNCTION name
AS 'functionClass' [LIBRARY library-name]

dropFunctionStatement:

DROP FUNCTION [IF EXISTS] name

Proposed Changes

Shared Changes for all DDLs

Extending Calcite Parser
We will extend the Calcite core parser in Flink to parse Flink’s DDL commands. The
extended parser will be added within flink-tablemodule.

For each DDL, a new type of SqlNode will be created and it will implement the
SqlDDLExecutable interface to allow the DDL commands to be executed directly.

/**
* Mix-in interface for {@link SqlNode} that allows DDL commands to be
* executed directly.
*/
public interface SqlDDLExecutable {

void execute(TableEnvironment tableEnv);
void execute(SessionEnvironment SessionEnv)

}

public interface SessionEnvironment {
void addTable(TableDescriptor tableDescriptor);

void dropTable(String name);

void addType(TypeDescripter typeDescripter);

void dropType(String name);

void addLibrary(LibraryDescripter libraryDescripter);

void dropLibrary(String name);

void addFunction(FunctionDescripter functionDescripter);

void dropFunction(String function);
}

MultiQueries Support
We will also add a parser to parse multi-queries SQL separated by semicolon.

Flink Table Environment
We will extend the existing sqlUpdate() interface to parse and execute DDL commands in
Flink TableEnvironment directly.

Also we will extract the Calcite parser instantiation logic to a auxiliary class FlinkSqlParser,
so both TableEnvironment and SQL client can reuse to parse query and DDL statements.

Table DDL
The table DDL will make use of the unified table source/sink instantiation mechanism
introduced in FLINK-8240 and FLINK-8866, and the unified connector API. We will convert
the SqlCreateTable SqlNode into the properties map that is required by TableFactoryService
to create the corresponding table source/sink.

View DDL
FLINK-10163 has already added initial support for View DDL, but without a proper parser.
The effort would be to add proper parser for view creation and deletion.

Also, we might need to add proper guards when a SQL statement tries to modify a view
because a view might not have corresponding columns into the underlying base tables.
Currently, we can make view read-only, and we might add support for updatable view in
the future.

Type DDL
CALCITE-2045 already added necessary changes in Calcite to support UDT. In addition to
simple type and row type, we will also add map and array type support in Flink’s type DDL.

In order for Table DDL to use UDT created through type DDL, we would need to translate
the UDT into a concrete type string that TypeStringUtils can understand before
instantiating the table source/sink.

Library DDL
The library DDL allows users to load external libraries, e.g. in local filesystem, HDFS and
etc. and use the library in the Flink SQL application, e.g. load external UDFs from the
library. We proposed the following changes.

https://issues.apache.org/jira/browse/FLINK-8240
https://issues.apache.org/jira/browse/FLINK-8866
https://docs.google.com/document/d/1Yaxp1UJUFW-peGLt8EIidwKIZEWrrA-pznWLuvaH39Y/edit
https://issues.apache.org/jira/browse/FLINK-10163
https://issues.apache.org/jira/browse/CALCITE-2045

Calcite Changes
We will add library support in Calcite in CALCITE-2046. With the change, library will
become part of Schema like types, function and tables in Calcite.

Loading Libraries in Flink
In order to support loading external libraries and create UDFs from external libraries, there
are 2 alternative solutions.

1) Add new interfaces registerUserJarFile(String jarFile...) and getUserJarFiles() in
{Stream}ExecutionEnvironment. It will allow users to register user JAR files to load
in their Flink job dynamically. Internally, the JAR files will be shipped using
JobGraph.addJar() along with the JobGraph, and loaded into the
userCodeClassLoader in RuntimeContext automatically.

2) Add a new interface in {Stream}ExecutionEnvironment.
registerUserJarFiles(name, jarFiles...)

The interface register a set of Jar files with key name. Internally, it uses similar path
as registerCachedFile(), which distributes the Jar files to runtime using Flink’s Blob
Server. Also, add a new interface in RuntimeContext to create and cache a custom
userCodeClassLoader using the Jar file set registered under name.

getClassLoaderWithName(name)
During code generation of the UDF function call, it will load the set of Jar files that
are associated with the library into a custom classLoader, and invoke the function
reflectively. Also, inside RuntimeContext implementation, we will keep a cached of
all loaded custom classLoader so we wont load the same library multiple times.

The second approach will allow on-demand loading of libraries, and also, support loading
the same class of different versions, which might help solve some dependency conflict
issues. And, functional-wise speaking, the first approach is a simplified version of the
second approach, in which the “name” parameter is a fixed value. Therefore, the second
approach is preferred.

Function DDL
The function DDL allow users to load a UDF from existing classpath or external libraries
and use it in SQL. It uses the registerFunction interfaces in
[Stream/Batch]TableEnvironment to register UDF/UDAF/UDTF.

https://issues.apache.org/jira/browse/CALCITE-2046

SQL client integration

Overview
In SQL client, it allow users to run multiple SQL commands in the same session. Also, SQL
client already has ways to statically define table, load external libraries through
configuration file.
To support DDL in SQL client, we will do the following:

● Add descriptor for types, libraries similar to TableDescriptor.
● Extend org.apache.flink.table.client.config.Environment to add instance variables for

types and libraries, so users can configure types, libraries and functions through
YAML statically.

● Extend org.apache.flink.table.client.gateway.SessionContext to implement
SessionEnvrionment interface defined above, and add a new instance variable called
sessionEnvironment in SessionContext to store the dynamic
tables/types/libraries/functions modified through DDLs.

● Add executeUpdate interface in Executor interface.
● When ExecutionContext is created, it will merge all static environment and

dynamically created environment through DDLs, and create/cache the
Table/Type/Library/Functions in ExecutionContext.

● When EnvironmentInstance is created, it will register the
Table/Type/Library/Functions with the created TableEnvironment.

Below are the proposed interface change in code.

public class Environment {

private Map<String, TableDescriptor> tables;

private Map<String, TypeDescriptor> types;

private Map<String, LibraryDescriptor> libraries;

private Map<String, FunctionDescriptor> functions;

private Execution execution;

private Deployment deployment;

…
}

public class SessionContext implement SessionEnvironment {

private final String name;
private final Environment defaultEnvironment;
private final Environment sessionEnvironment;

@override void addTable(TableDescriptor tableDescriptor);

@override void dropTable(String name);

@override void addType(TypeDescripter typeDescripter);

@override void dropType(String name);

@override void addLibrary(LibraryDescripter libraryDescripter);

@override void dropLibrary(String name);

@override void addFunction(FunctionDescripter functionDescripter);

@override void dropFunction(String function);
…

}

Also, we will add “create”, “delete”, “list types”, “list libraries” and “list functions” commands
and etc. in CliClient to support DDL.

DROP Statement
Currently, DROP statement will only support dropping of the entities created dynamically
through DDL in SQL client. A DROP statement on a entity defined statically through YAML
file in SQL client will be a no-op.

SessionContext Persistence
With DDL, users can dynamically create new tables/functions and etc. And we should allow
users to persist their current SessionContext, so they can resume from it later. Therefore,
we will also add a ‘save’ command to save the SessionContext to external filesystems.

Discussion

Side effect of DDLs
Currently, all CREATE and DROP DDLs will only create a temporary view in Flink, and
should not have side effect on the external systems. For example, when a CREATE TABLE
command is issued to create a KafkaTableSource, the DDL wont attempt to create the topic
in Kafka if it does not exist; when a DROP TABLE command is issued on
CassandraTableSink, it will only drop the CassandraTableSink instance in Flink, and the
actual external Cassandra table will be intact.

In the future, we might look into adding new DDLs to manipulate the external tables
through ExternalCatalog.

DROPPING non-DDL created entities
Dropping non-DDL created entities might be complicated. If the entities are defined in the
SQL client YAML file, we can use the NULL object pattern, add a NULL descriptor to
replace the static entity during environment merging given DDL commands take
precedence over static YAML configurations. Currently, we don’t plan to support entities
that are created through external Catalog, support for this will be our future work.

Test Plan
Normal unit, integration, and end-to-end tests

Implementation Plan

Table DDL
1. Extend Calcite parser to support parsing Table DDL
2. Add support in sqlUpdate() in Flink’s Table environment to support Table DDL
3. Add support in SQL client for handling Table DDL

View DDL
1. Extend Calcite parser to support parsing View DDL
2. Remove the View DDL parsing logic in SQL client
3. Add guard to prevent modifying View

Type DDL
1. Extend Calcite parser to support parsing Type DDL
2. Add support in sqlUpdate() in Flink’s Table environment to support type DDL.
3. Add support in SQL client for handling Type DDL
4. Add map and array type support in Flink’s type DDL

Library/Function DDL
1. Add library support in Calcite
2. Add support in {Stream}ExecutionEnvironment to allow on-demand loading of user

libraries
3. Extend Calcite parser to support parsing Library/Function DDL
4. Add support in sqlUpdate() in Flink’s Table environment to support Library/Function

DDL
5. Add support in SQL client for handling Library/Function DDL

Compatibility, Deprecation, and Migration Plan
No compatibility changes or other deprecation necessary.

