Chapter 10 Outline Chemical Quantities

• Sample Problem

You often measure the amount of something by	 Practice Problems How many moles are in 4.65 x 10²⁴ molecules of NO₂?
, by, or by	• How many moles are in 4.03 x 10 molecules of NO ₂ !
A (mol) of a substance is	
representative particles of that substance.	 How many atoms are in 4.33 mol magnesium sulfate?
6.02 x 10 ²³ is called number.	• How many atoms are in 4.33 mor magnesium sunate:
1 mole =	
A refers to the species	The of an element expressed in
present in a substance: usually	grams is the mass of a of the element.
·	 The mass of a of an element is the
Elements normally exist as, but 7 elements	or all element is the
exist as molecules:	 To calculate the of a compound, find
·	the number of of each in
Sample Problem	one mole of the compound. Then the masses of
How many moles is 2.80 x 19 ²⁴ atoms of silicon?	the elements in the compound.
	Sample Problem
	 What is the molar mass of PCl₃?
Practice Problems	timatis the metal mass of the ag
How many moles is 2.17×10^{23} representative particles	Practice Problems
of bromine?	 What is the molar mass of sodium hydrogen carbonate?
How many molecules are in 2.12 mol of propane? (m/c	What is the mass of calcium nitrate?
= molecules)	Section 10.1 Assessment

• How many atoms are in 1.14 mol SO₃?

1. Describe the relationship betwee and one mole of any substance.	en Avogadro's number	 Calculate the number of moles in 75.0g of dinitrogen 	
2. How can you calculate the mass of compound?	of a mole of a	trioxide.	
3. How many moles is 1.50×10^{23} m	olecules NH ₃ ?	 hypothesis states that equal of gases at the same temperature and pressure contain equal numbers of <u>particles</u>. 	
4. How many atoms are in 1.75 mol	of CHCl ₃ ?	 At, 1 mole of gas occupies a volume of STP = 	
5. What is the molar mass of CaSO ₄	?	The of a gas changes with and pressure, so can only be used if the gas is	
 Section 10.2 – Mole-Mass and Mass a	of a substance as a	 at 1 mol = Sample Problem Determine the volume, in liters, of 0.60 mol of SO₂ gas at STP. 	
 Sample Problem What is the mass of 9.45 mol of a 	alumiunum oxide?	 Practice Problems What is the volume of 3.70 mol N₂ at STP? 	
 Practice Problems Find the mass, in grams, of 4.52 x Calculate the mass of 2.50 mol of 	20 .2	 How many moles is in 127L of CO₂ at STP? Now you have conversion factors for moles: 1 mol = 	

•	1 mol =	
•	1 mol =	Sample Problem
•	Section 10.2 Assessment	 When a 13.60g sample of a compound containing only
1.	What is the volume of one mole of any gas at STP?	magnesium and oxygen is decomposed, 5.40g of oxygen is obtained. What is the percent composition of this
2.	How many grams are in 5.66 mol of calcium carbonate?	compound?
3.	Find the number of moles in 508g of ethanol (C_2H_5OH).	
		Practice Problems
4	Calculate the coalculate in literal aff 1.50 and ablasian at	 A compound formed when 9.03g Mg combines
4.	Calculate the volume, in liters, of 1.50 mol chlorine at	completely with 3.48g N. What is the percent
	STP.	composition of this compound?
5.	Three balloons filled with 3 different gaseous	
	compounds each have a volume of 22.4L at STP. Would	
	these balloons have the same mass or contain the same	 When a 14.2g sample of mercury (II) oxide is
	number of molecules? Explain.	decomposed into its elements by heating, 13.2g of Hg is obtained. What is the percent composition of this
•	Section 10.3 – Percent Composition and Chemical	compound?
	Formulas	
•	The percent by mass () of an	If a problem does not give
	element in a compound is the number of grams of the	you the exact masses of the elements, then you can use
	divided by the mass in grams of the	the instead.
	multiplied by	Use the same for percent composition.
•	% mass of element =	Sample Problem

• Calculate the percent composition of propane (C ₃ H ₈).	Change % toConvert grams to
	• each number by the answer.
	Sample Problem
	 Calculate the empirical formula for a compound that is
Practice Problems	67.6% Hg, 10.8% S, and 21.6% O.
Calculate the percent composition of sodium hydrogen	
sulfate.	
	Practice Problems
	 Calculate the empirical formula for the following:
 Calculate the percent composition of NITROGEN in 	 94.1% O and 5.9% H
ammonium nitrate.	3 1.1/0 3 and 3.3/0 ii
The is the actual formula for a	• 62.1% C, 13.8% H, and 24.1% N
molecular compound. It contains the number	
of each type of atom.	
• The is the	
whole-number ratio of atoms in a	 After step, you should get numbers that
	can be used as the
\bullet $C_6H_{12}O_6$ \square	 Sometimes you will get a number that ends in or
	Do round these numbers.
• Sometimes the formula is the same as	For, multiply all answers by
the formula. Ex:	For, multiply all answers by
• To calculate the empirical formula, you follow steps:	Sample Problem

A compound is analyzed and found to contain 25.9% nitrogen and 74.1% oxygen. What is the empirical formula of the compound?
Practice Problem Determine the empirical formula for a compound that is 50.7% C, 4.2% H, and 45.1% O.
An empirical and molecular formula differ by a, so their also differ by the same whole-number multiple. $m.f. \qquad e.f. \\ C_6H_{12}O_6 \ \Box$ $180 \text{ g/mol } \ \Box$

• Whole-number multiplier =

• Sample Problem

 Calculate the molecular formula of a compound whose molar mass is 60g/mol and empirical formula is CH₄N.

Practice Problems

- Find the molecular formula for antifreeze with a molar mass of 62 g/mol and an empirical formula of CH₃O.
- What is the molecular formula for a compound with a molar mass of 90 g/mol and an empirical formula of CH₂O?

• Section 10.3 Assessment

- 1. How do you calculate the percent by mass of an element in a compound?
- 2. What information can you obtain from an empirical formula?
- 3. How is the molecular formula of a compound related to its empirical formula?

4. Calculate the percent composition of calcium acetate.

5. The compound methyl butanoate has a percent composition of 58.8% C, 9.8% H, and 31.4% O and its molar mass is 102 g/mol. What is its empirical and molecular formula?

6. Which of the following molecular formulas are also empirical formulas?

a.
$$C_5H_{10}O_5$$

c.
$$C_{55}H_{72}MgN_4O_5$$

b.
$$C_6H_{12}O_2$$

d.
$$C_{12}H_{17}ON$$