

Thanks Ajinkya Tejankar, Mohsin Iqbal, Sujit Ahirrao, and Krishna Gupta for the notes!

After the event, the note will be used to:

1.​ Create a summary and key takeaways for each talk.
2.​ Curate a list of resources for people to learn about GPU optimization, recommended by

the speakers and other attendees.
a.​ A roadmap would be nice.

The materials will be posted on our shared GitHub repo when done.

Crash course to GPU optimization shared notes [Slides]

1.​ PyTorch
a.​ Needs to support different dtypes, layouts, and devices so the kernels are

general
b.​ Eager execution allows easy debugging but this trades off performance
c.​ Models getting converged to eager may not be the best performance

2.​ Pointwise ops
a.​ Every element assigned to a single thread that run in parallel

3.​ Memory hierarchy
a.​ Load data in shared memory and apply relu
b.​ Done differently in Triton

4.​ Eager execution can lead to unnecessary memory accesses if kernels are repeated
5.​ GPU mem bandwidth is the bottleneck not FLOPs
6.​ Operations / no of bytes accessed = arithmetic intensity
7.​ Repeated calls to a kernel can be fused together - torch.compile (generates Triton) -

PyTorch 2 paper for more information
8.​ FP32 to FP16 or BF16 improves the perf significantly
9.​ torch.set_float32_matmul_precision(‘high’) => use tensor cores => talk by Nvidia about

tensor cores on CUDA MODE
10.​Most of the time may be spent on figuring out which GPU kernel to use because 1.a

above
11.​CUDA kernels are asyc so queue them up -> CUDA graphs “reduce-overhead” in

torch.compile
12.​Quantization helps compute bound but also mem bound kernels as it reduces the

number of bytes accessed in the arithmetic intensity calculation
13.​GPT fast - weight only quantization
14.​Int8 is ambiguous - quantize optimizers? Gradients? Not applied over all the model only

the linear layers. W8A16 -> Int 8 weights.
15.​Bit packing: Pack 2 int4s into a single int8
16.​Compute bound problems: become better at math
17.​Why compiler couldn’t have figured out FlashAttention? Q by a reviewer Compilers are

good at fusing kernels but not math of the operations

https://github.com/mlops-discord/gpu-optimization-workshop
https://github.com/mlops-discord/gpu-optimization-workshop/blob/main/slides_1_Crash%20course%20on%20GPU%20optimization.pdf

18.​Online softmax paper explains the FlashAttention better
19.​Learn the basics of CUDA - Programming Massively Parallel Processors: A Hands-on

Approach - helps with compute bound kernels
20.​load_inline function in `cpp_extension` in pytorch
21.​Nvidia provides a profiler: `ncu` - good supplement for reading the above book
22.​Write kernels!! Good content on the cuda-mode and join for writing custom kernels
23.​Karpathy - building in raw cuda
24.​Reach out to Mark for shipping your hand written cuda kernels (he’ll help with release)
25.​Learning through mentorship is great since public docs are not great at the moment
26.​Quantization is not possible through torch.compile
27.​How to make PyTorch models faster: Fuse more, use tensor cores, reduce overhead,

quantize, use a custom kernel (all in order)
28.​How’s execute torch different from torch.compile? Focused on more constrained

devices. However, dynamo (a part of the compile subsystem) is shared.
29.​How does PyTorch treat GPUs other than Nvidia’s? Triton provides backends that work

on Intel, AMD GPUs so PyTorch just generates Triton. Hierarchical IR and Code gen.
30.​What do you think about 1 bit quantization? Eval does not scale. Bit packing can help.
31.​Common pitfalls of running GPUs?

a.​ Eager - Profile first to figure out the real bottlenecks
b.​ Compile - Enable first 3 things on 27 point

Relevant resources
●​ CUDA Programming model basics:

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a7

●​ Programming Massively Parallel Processors: A Hands-on Approach
●​ CUDA Mode: discord.gg/cudamode
●​ Native PyTorch library for quantization and sparsity: https://github.com/pytorch/ao
●​ Learn Triton: https://github.com/cuda-mode/triton-index/

LLM Serving optimization

1.​ Focusing on server-based systems not edge-end user latencies are important
2.​ Multi-functional accurate models are large - deployment and optimization is a challenge
3.​ Many models, very big models, new operators (optimization becomes a moving target)
4.​ Goal: SoTA performance for LLMs for production deployments
5.​ Fast forward pass is very important. Also, important intelligent batching
6.​ Other techniques like kv cache optimization for improved GPU workload
7.​ Quantization

a.​ As long as you can preserve accuracy, lower bit-width precisions are great

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a7
https://a.co/d/folc0LI
http://discord.gg/cudamode
https://github.com/pytorch/ao
https://github.com/cuda-mode/triton-index/

i.​ Lesser memory, higher throughput comms between GPUs, faster
computation (all-round win)

b.​ Post-training quantization is the most common
c.​ TensorRT model optimizer offers a bunch of techniques

i.​ PTQ (post-training quantization) and QAT (quantization-aware training)
ii.​ SmoothQuant and INT4 AWQ don’t lead to too much drop in acc (MMLU)

8.​ LLM request has two phases
a.​ Prefill: process the prompt, generate the first token, and init the kv cache. Called

only once for a request. Lots of parallel operations across tokens.
b.​ Generate: starts from prior state (kv cache) and generates the next token,

updating the kv cache. Called in a loop for each request. Lot of memory bound
operations.

c.​ Attention is complex - features like GQA and Speculative Decoding increase
math:data movement ratio (arithmetic intensity)

d.​ TRT-LLMs fastest implementations use hand tuned custom cuda kernels
9.​ Traditional Request Scheduling (static batching)

a.​ Accumulate, batch, forward
b.​ Request as an atomic operation is great for fixed length inputs however for tasks

like completion where outputs differ in length this is not great. (image vs. chat)
c.​ Largest completion in a batch can stall the smallest completion. Padding also

wastes computation.
10.​LLM Request Properties

a.​ Multiple forwards passes and the number is unknown a priori
b.​ Online setting, request arrival time is priori
c.​ In flight batching

i.​ On EOS, Max tokens reached, stop phrase -> send response and evict
ii.​ Process new work - next iteration of LLM

1.​ Prompt phase goes to prefill
2.​ Prefill goes to generate
3.​ Generate keeps generating

iii.​ Transformer ops
1.​ Token parallel - Matmul, LayerNorm
2.​ Sequence parallel - MHA
3.​ Tokens across above two types are concatenated in in-flight

batching to improve memory bound (makes it more compute
intensive)

d.​ Paged KV Cache
i.​ Contiguous KV Cache leads to wasted allocation of memory since all KV

cache memory is contiguous
ii.​ Instead think of memory as a linked list of pages - reduces memory

unused memory - lazy memory allocation - increases complexity of
attention kernel

iii.​ Allows sharing of KV cache between requests! E.g. system prompt kv
cache blocks are part of the linked list of different requests!

e.​ Speculative Decoding
i.​ Instead of generating a single token as in regular autoregressive

generation, generate many tokens
ii.​ Evaluate if draft tokens are valid in the same time as a single token is

generated
iii.​ Speculates that speculative decoding will be used everywhere ;)
iv.​ Turns latency problem into throughput problem where GPUs are great

f.​ Time to first token vs time between token. Which is important? Time between
since time to first is easily optimized.

g.​ Online vs batch inference. Which is common? Online is important, but the idea is
to turn online into batch inference.

h.​ Any specific techniques for streaming mode? Not much. Stream out tokens as
they are generated. Since everything is async anyway.

i.​ Quantization sounds too good to be true. Any caveats? PTQ is model dependent.
j.​ Good intro paper for changing workload? Orca paper. Link in the discord.
k.​ Many LLM inference services. Which one to use? Each is optimized for a specific

use cases so explore.
l.​ What are the questions ppl should be asking when evaluating inference

services? Clarity of Quality of Service (latency, throughput, acc) for your use case
m.​ Now way to avoid multi-gpu since models keep getting bigger. For many cases,

single GPU use case is just fine.

Relevant resources
●​ Decoding Speculative Decoding
●​ Accelerating Large Language Model Decoding with Speculative Sampling
●​ Efficient Memory Management for Large Language Model Serving with PagedAttention

Block-based optimization with Triton [Slides]
1.​ CUDA - all sorts of things can be done on GPUs but since it allows anything to be done it

creates problems and hampers productivity.
a.​ First few months of support are okay
b.​ Supporting different gpus becomes problem
c.​ Opaque to researchers - cannot read CUDA code - reading tensor core code

requires proficiency - becomes a black box - slows down research
d.​ Addressed with Graph Compilers - better for research

i.​ Walking a tree, linked lists in PyTorch are very slow
ii.​ Control flow becomes complicated with graph operators
iii.​ Code gen from graph compilers is a very difficult problem - this gives rise

FlashAttention like custom CUDA kernels
iv.​ Simplicity at the cost of flexibility

2.​ Triton - more low level than graph compilers but much easier to work with than CUDA

https://arxiv.org/html/2402.01528v1
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2309.06180
https://github.com/mlops-discord/gpu-optimization-workshop/blob/main/slides_3_Triton.pdf

a.​ Can write algorithms out of scope of graph compilers - trees, linked lists, radix
sort

b.​ Code still remains readable/modifiable by researchers
c.​ Performance is portable across different vendors
d.​ Less expressive than CUDA not as fast

3.​ Triton Machine Model
a.​ DRAM, L1 and L2 cache, Cores, Memory Controllers - Von Neumann Basic

4.​ Programming Model​
a.​ Tensors are defined in SRAM and modified using torch like operators
b.​ Embedded in Python and Just-in-Time compiled
c.​ Tensor of pointers!
d.​ Powers of 2 - shapes of tensors!?

5.​ Vector addition
a.​ Each program gets a different slice to the input with tl.program_id

6.​ Softmax
a.​ Entirely fused kernels in less than 10 lines
b.​ Load the data only once unlike PyTorch eager mode

7.​ Why blocked program representation?
a.​ Peephole optimization
b.​ SRAM allocation
c.​ Automatic vectorization - Need to issue big enough loads to keep the memory

bandwidth busy
d.​ Compiler allocates shared mem in addition to registers
e.​ Lot of value in researchers doing kernel developement!
f.​ Technical debt manageable

8.​ Challenges of building kernels at OpenAI scale? Reliability vs agility of the code base
9.​ Tricks for single GPU? Consumer GPUs have restriction on tensor cores. Go out of your

way to use 16bit tensor cores. Not a priority of OpenAI, but TinyGrad focuses on it.
10.​Model performance can change after optimizations? Kernel output shouldn’t change with

reference non-optimized implementation. Power of 2 inputs.
11.​Surprising kernels built on top of Triton? Sorting kernel. Hypercubes.
12.​Why block based? Grew out of dissertation.

Relevant resources
●​ https://openai.com/index/triton/
●​

Scaling data workloads on GPUs

1.​ Transactional databases - not gpu friendly - row oriented - CSV
2.​ Analytics datasets - gpu friendly - column oriented - Parquet, Apache Arrow. Apache

Arrow is everywhere today. It makes it easy to move data across multiple data platforms.

https://openai.com/index/triton/

3.​ Nvidia Rapids contains many libraries for gpu processing: cuPy, cuDF, cuML, cuGraph
4.​ Benchmark showing prformance boost moving from CPU to GPU, can be up to 100x

times faster. The speed up is more with larger workloads.
5.​ Data processing on CPUs eventually hits a wall.
6.​ GPUs are fast for data processing because many data processing jobs are naturally

parallelizable and GPUs have many cores.
7.​ What to do depending on where your job bottlenecks: memory bound, latency bound, or

compute bound. Figure out where the bottleneck is by using profiling tools.

Relevant resources

Overall

	Crash course to GPU optimization shared notes [Slides]
	Relevant resources

	LLM Serving optimization
	Relevant resources

	Block-based optimization with Triton [Slides]
	Relevant resources

	Scaling data workloads on GPUs
	Relevant resources

	Overall

