
 

Thanks Ajinkya Tejankar, Mohsin Iqbal, Sujit Ahirrao, and Krishna Gupta for the notes! 
 
After the event, the note will be used to: 

1.​ Create a summary and key takeaways for each talk. 
2.​ Curate a list of resources for people to learn about GPU optimization, recommended by 

the speakers and other attendees. 
a.​ A roadmap would be nice. 

 
The materials will be posted on our shared GitHub repo when done. 

Crash course to GPU optimization shared notes [Slides] 
 

1.​ PyTorch 
a.​ Needs to support different dtypes, layouts, and devices so the kernels are 

general 
b.​ Eager execution allows easy debugging but this trades off performance 
c.​ Models getting converged to eager may not be the best performance 

2.​ Pointwise ops 
a.​ Every element assigned to a single thread that run in parallel 

3.​ Memory hierarchy 
a.​ Load data in shared memory and apply relu 
b.​ Done differently in Triton 

4.​ Eager execution can lead to unnecessary memory accesses if kernels are repeated 
5.​ GPU mem bandwidth is the bottleneck not FLOPs 
6.​ Operations / no of bytes accessed = arithmetic intensity 
7.​ Repeated calls to a kernel can be fused together - torch.compile (generates Triton) - 

PyTorch 2 paper for more information 
8.​ FP32 to FP16 or BF16 improves the perf significantly 
9.​ torch.set_float32_matmul_precision(‘high’) => use tensor cores => talk by Nvidia about 

tensor cores on CUDA MODE 
10.​Most of the time may be spent on figuring out which GPU kernel to use because 1.a 

above 
11.​CUDA kernels are asyc so queue them up -> CUDA graphs “reduce-overhead” in 

torch.compile 
12.​Quantization helps compute bound but also mem bound kernels as it reduces the 

number of bytes accessed in the arithmetic intensity calculation 
13.​GPT fast - weight only quantization 
14.​Int8 is ambiguous - quantize optimizers? Gradients? Not applied over all the model only 

the linear layers. W8A16 -> Int 8 weights. 
15.​Bit packing: Pack 2 int4s into a single int8 
16.​Compute bound problems: become better at math 
17.​Why compiler couldn’t have figured out FlashAttention? Q by a reviewer Compilers are 

good at fusing kernels but not math of the operations 
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18.​Online softmax paper explains the FlashAttention better 
19.​Learn the basics of CUDA - Programming Massively Parallel Processors: A Hands-on 

Approach - helps with compute bound kernels 
20.​load_inline function in `cpp_extension` in pytorch 
21.​Nvidia provides a profiler: `ncu` - good supplement for reading the above book 
22.​Write kernels!! Good content on the cuda-mode and join for writing custom kernels 
23.​Karpathy - building in raw cuda 
24.​Reach out to Mark for shipping your hand written cuda kernels (he’ll help with release) 
25.​Learning through mentorship is great since public docs are not great at the moment 
26.​Quantization is not possible through torch.compile 
27.​How to make PyTorch models faster: Fuse more, use tensor cores, reduce overhead, 

quantize, use a custom kernel (all in order) 
28.​How’s execute torch different from torch.compile? Focused on more constrained 

devices. However, dynamo (a part of the compile subsystem) is shared. 
29.​How does PyTorch treat GPUs other than Nvidia’s? Triton provides backends that work 

on Intel, AMD GPUs so PyTorch just generates Triton. Hierarchical IR and Code gen. 
30.​What do you think about 1 bit quantization? Eval does not scale. Bit packing can help. 
31.​Common pitfalls of running GPUs? 

a.​ Eager - Profile first to figure out the real bottlenecks 
b.​ Compile - Enable first 3 things on 27 point 

Relevant resources 
●​ CUDA Programming model basics: 

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#4 
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a4 
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a7 

●​ Programming Massively Parallel Processors: A Hands-on Approach 
●​ CUDA Mode: discord.gg/cudamode 
●​ Native PyTorch library for quantization and sparsity: https://github.com/pytorch/ao 
●​ Learn Triton: https://github.com/cuda-mode/triton-index/ 

LLM Serving optimization 
 

1.​ Focusing on server-based systems not edge-end user latencies are important 
2.​ Multi-functional accurate models are large - deployment and optimization is a challenge 
3.​ Many models, very big models, new operators (optimization becomes a moving target) 
4.​ Goal: SoTA performance for LLMs for production deployments 
5.​ Fast forward pass is very important. Also, important intelligent batching 
6.​ Other techniques like kv cache optimization for improved GPU workload 
7.​ Quantization 

a.​ As long as you can preserve accuracy, lower bit-width precisions are great 

          

https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a4
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf#a7
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i.​ Lesser memory, higher throughput comms between GPUs, faster 
computation (all-round win) 

b.​ Post-training quantization is the most common 
c.​ TensorRT model optimizer offers a bunch of techniques 

i.​ PTQ (post-training quantization) and QAT (quantization-aware training) 
ii.​ SmoothQuant and INT4 AWQ don’t lead to too much drop in acc (MMLU) 

8.​ LLM request has two phases 
a.​ Prefill: process the prompt, generate the first token, and init the kv cache. Called 

only once for a request. Lots of parallel operations across tokens. 
b.​ Generate: starts from prior state (kv cache) and generates the next token, 

updating the kv cache. Called in a loop for each request. Lot of memory bound 
operations. 

c.​ Attention is complex - features like GQA and Speculative Decoding increase 
math:data movement ratio (arithmetic intensity) 

d.​ TRT-LLMs fastest implementations use hand tuned custom cuda kernels 
9.​ Traditional Request Scheduling (static batching) 

a.​ Accumulate, batch, forward 
b.​ Request as an atomic operation is great for fixed length inputs however for tasks 

like completion where outputs differ in length this is not great. (image vs. chat) 
c.​ Largest completion in a batch can stall the smallest completion. Padding also 

wastes computation. 
10.​LLM Request Properties 

a.​ Multiple forwards passes and the number is unknown a priori 
b.​ Online setting, request arrival time is priori 
c.​ In flight batching 

i.​ On EOS, Max tokens reached, stop phrase -> send response and evict 
ii.​ Process new work - next iteration of LLM 

1.​ Prompt phase goes to prefill 
2.​ Prefill goes to generate 
3.​ Generate keeps generating 

iii.​ Transformer ops 
1.​ Token parallel - Matmul, LayerNorm 
2.​ Sequence parallel - MHA 
3.​ Tokens across above two types are concatenated in in-flight 

batching to improve memory bound (makes it more compute 
intensive) 

d.​ Paged KV Cache 
i.​ Contiguous KV Cache leads to wasted allocation of memory since all KV 

cache memory is contiguous 
ii.​ Instead think of memory as a linked list of pages - reduces memory 

unused memory - lazy memory allocation - increases complexity of 
attention kernel 

iii.​ Allows sharing of KV cache between requests! E.g. system prompt kv 
cache blocks are part of the linked list of different requests! 

          



 

e.​ Speculative Decoding 
i.​ Instead of generating a single token as in regular autoregressive 

generation, generate many tokens 
ii.​ Evaluate if draft tokens are valid in the same time as a single token is 

generated 
iii.​ Speculates that speculative decoding will be used everywhere ;) 
iv.​ Turns latency problem into throughput problem where GPUs are great 

f.​ Time to first token vs time between token. Which is important? Time between 
since time to first is easily optimized. 

g.​ Online vs batch inference. Which is common? Online is important, but the idea is 
to turn online into batch inference. 

h.​ Any specific techniques for streaming mode? Not much. Stream out tokens as 
they are generated. Since everything is async anyway. 

i.​ Quantization sounds too good to be true. Any caveats? PTQ is model dependent. 
j.​ Good intro paper for changing workload? Orca paper. Link in the discord. 
k.​ Many LLM inference services. Which one to use? Each is optimized for a specific 

use cases so explore. 
l.​ What are the questions ppl should be asking when evaluating inference 

services? Clarity of Quality of Service (latency, throughput, acc) for your use case 
m.​ Now way to avoid multi-gpu since models keep getting bigger. For many cases, 

single GPU use case is just fine. 

Relevant resources 
●​ Decoding Speculative Decoding 
●​ Accelerating Large Language Model Decoding with Speculative Sampling 
●​ Efficient Memory Management for Large Language Model Serving with PagedAttention 

Block-based optimization with Triton [Slides] 
1.​ CUDA - all sorts of things can be done on GPUs but since it allows anything to be done it 

creates problems and hampers productivity. 
a.​ First few months of support are okay 
b.​ Supporting different gpus becomes problem 
c.​ Opaque to researchers - cannot read CUDA code - reading tensor core code 

requires proficiency - becomes a black box - slows down research 
d.​ Addressed with Graph Compilers - better for research 

i.​ Walking a tree, linked lists in PyTorch are very slow 
ii.​ Control flow becomes complicated with graph operators 
iii.​ Code gen from graph compilers is a very difficult problem - this gives rise 

FlashAttention like custom CUDA kernels 
iv.​ Simplicity at the cost of flexibility 

2.​ Triton - more low level than graph compilers but much easier to work with than CUDA 

          

https://arxiv.org/html/2402.01528v1
https://arxiv.org/abs/2302.01318
https://arxiv.org/abs/2309.06180
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a.​ Can write algorithms out of scope of graph compilers - trees, linked lists, radix 
sort 

b.​ Code still remains readable/modifiable by researchers 
c.​ Performance is portable across different vendors 
d.​ Less expressive than CUDA not as fast 

3.​ Triton Machine Model 
a.​ DRAM, L1 and L2 cache, Cores, Memory Controllers - Von Neumann Basic 

4.​ Programming Model​  
a.​ Tensors are defined in SRAM and modified using torch like operators 
b.​ Embedded in Python and Just-in-Time compiled 
c.​ Tensor of pointers! 
d.​ Powers of 2 - shapes of tensors!? 

5.​ Vector addition 
a.​ Each program gets a different slice to the input with tl.program_id 

6.​ Softmax 
a.​ Entirely fused kernels in less than 10 lines 
b.​ Load the data only once unlike PyTorch eager mode 

7.​ Why blocked program representation? 
a.​ Peephole optimization 
b.​ SRAM allocation 
c.​ Automatic vectorization - Need to issue big enough loads to keep the memory 

bandwidth busy 
d.​ Compiler allocates shared mem in addition to registers 
e.​ Lot of value in researchers doing kernel developement! 
f.​ Technical debt manageable 

8.​ Challenges of building kernels at OpenAI scale? Reliability vs agility of the code base 
9.​ Tricks for single GPU? Consumer GPUs have restriction on tensor cores. Go out of your 

way to use 16bit tensor cores. Not a priority of OpenAI, but TinyGrad focuses on it. 
10.​Model performance can change after optimizations? Kernel output shouldn’t change with 

reference non-optimized implementation. Power of 2 inputs. 
11.​Surprising kernels built on top of Triton? Sorting kernel. Hypercubes. 
12.​Why block based? Grew out of dissertation. 

Relevant resources 
●​ https://openai.com/index/triton/ 
●​  

Scaling data workloads on GPUs 
 

1.​ Transactional databases - not gpu friendly - row oriented - CSV 
2.​ Analytics datasets - gpu friendly - column oriented - Parquet, Apache Arrow. Apache 

Arrow is everywhere today. It makes it easy to move data across multiple data platforms. 
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3.​ Nvidia Rapids contains many libraries for gpu processing: cuPy, cuDF, cuML, cuGraph 
4.​ Benchmark showing prformance boost moving from CPU to GPU, can be up to 100x 

times faster. The speed up is more with larger workloads. 
5.​ Data processing on CPUs eventually hits a wall. 
6.​ GPUs are fast for data processing because many data processing jobs are naturally 

parallelizable and GPUs have many cores. 
7.​ What to do depending on where your job bottlenecks: memory bound, latency bound, or 

compute bound. Figure out where the bottleneck is by using profiling tools. 

Relevant resources 

Overall 
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