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MedARC Brain-inspired Transformers
The intention for weekly meetings is to update everyone as to what is being worked on, get
everyone on the same page regarding big picture goals, help anyone get unstuck on their
problems, brainstorm next things to work on / new ideas for the project, etc. If you are new, the
weekly meeting is a great place to introduce yourself and see how you can contribute to the
project. If you cannot attend weeklies, you can still contribute to the project – you can watch our
recordings of all meetings on the notion and you should still add updates to this Google doc.
You can find tasks to work on by checking our todo list. Message Connor or post in the working
group if you ever want to contribute and don’t know how.

Sep 20
Connor

● Nothing new. Hoping to have some time to get back to this next week.
Alisa

● Ran a few visualization experiments and analysis here detailed here:
Visualizations for topomoe_tiny_3s_patch16_128

https://docs.google.com/document/d/11kM8foxRzotZfZR8LEqfpTeAAOkOGQQPNlX9w9vKMMU/edit
https://www.notion.so/stabilityai/Brain-like-transformers-working-group-video-recordings-bd2708714c5d4be2a6678a72bef3754c
https://discord.com/channels/1025299671226265621/1182743404732485732
https://docs.google.com/presentation/d/13Jj4i6Pbf5z5McFs9qmE61xKroDEkt-H1Ej5ZY3c9UM/edit?usp=sharing
https://docs.google.com/document/d/1PYKBuio_1uLUQHOvgKJsafZyNVMQYkgEH6Zy41D_jJY/edit#heading=h.iu07yz6a8010


Aug 23
Connor

● Setting up some training runs on full imagenet. Models will still be either small or base
scale. But full resolution images, full dataset, longer training schedule so should
hopefully see more interesting learned structure.

● Planning on training models from three families: vit, soft moe, and topo moe.

Aug 16
● Talked about approach for extracting activations and how we want to analyze. Alisa is

working on this. Notes taken here.

Aug 9
Connor:

● Started paper draft overleaf with initial description of model architecture
https://www.overleaf.com/read/hstkgswkdjmq#33bdab

Aug 2
Connor:

● Implemented Soft MoE:
https://github.com/clane9/columnformers/blob/soft_moe/topomoe/models/softmoe.py

● Soft MoE block:
1. standard self attention
2. route tokens to slots (dispatch)
3. MoE MLP (fixed slot assignment)
4. route slots to tokens (combine)

● Topo MoE block:
1. route tokens to tokens ("pool")
2. map expert weights (query, mlp) to tokens
3. MoE attention (expert query weights, learned token assignment)
4. MoE MLP (learned token assignment)

● Soft MoE applies experts in slot space using a fixed expert-slot assignment; Topo MoE
applies experts in token space using a learned expert-token assignment.

● Thinking about how to analyze expert selectivity. First some review of other works
approaches:

● TDANN:

https://docs.google.com/document/d/1cs2CSXWlc-NkHeO4of2_W0qTu1OnFUGleU5wrx2Uc6E/edit?usp=sharing
https://www.overleaf.com/read/hstkgswkdjmq#33bdab
https://github.com/clane9/columnformers/blob/soft_moe/topomoe/models/softmoe.py


○ Used stimuli for faces, bodies, characters, places, objects from fLoc (Nb,
grayscale on phase scrambled background).

○ Measured activation of each unit to each image
○ Computed selectivity t score (on=target categories, off=other categories)

○ I don't get why they see selectivity for faces/places? The model was trained on
ImageNet, which does not have many faces or places?

○ I'm a little uneasy about the use of fLoc stimuli, since they are out of distribution
wrt to the training data.

● All-TNN
○ Used stimuli for faces, places, tools from VGG-Face/ecoset:

To determine high-level object selectivity in the last layer of the models, we
selected 500 images for each superclass used to test selectivity (faces, places
and tools). The places and tools images are selected from the 10 most common
classes for the respective superclass found in ecoset validation set. The faces
are taken from the VGG-Face dataset75. Places: ‘House’, ‘City’, ‘Kitchen’,
‘Mountain’, ‘Road’, ‘River’, ‘Jail’, ‘Castle’, ‘Lake’, ‘Iceberg’ Tools: ‘Phone’, ‘Gun’,

https://github.com/VPNL/fLoc


‘Book’, ‘Table’, ‘Clock’, ‘Camera’, ‘Cup’, ‘Key’, ‘Computer’, ‘Knife’ Faces: 10
identities taken from the VGG-Face dataset75.

○ Similar selectivity metric (Nb typo):

● ITN:
○ Used stimuli for faces, objects, scenes from VGG-Face, ImageNet, Places365
○ Similar t-test based selectivity analysis:

each unit is analyzed separately for its mean response to each stimulus domain
(objects, faces, scenes), using untrained validation images from the same
categories used in training. In addition to computing the mean response to each
domain, we compute selectivity, a ubiquitous metric used in neuroscience, to
analyze how responsive a unit is to one domain compared to all others. We
compare the responses of each domain versus the others using a two-tailed t test



● I think we could start with an exploratory approach
○ Figure 1: large grid of (num_patches * 3 x num_patches * 3) validation images.

Each 3x3 block corresponds to the top 9 most strongly activating images for the
corresponding patch. (Can also look at least strongly activating for comparison.)
The goal is to explore what images drive activation in each region of the
topographic map. (Note that map region correlates with expert composition.)

Inspiration from here:

https://cs.stanford.edu/people/karpathy/cnnembed/


○ Figure 2: grid of (num_patches x num_patches) plots. Each plot is a bar plot
showing the mean activations for each of the 100 imagenet-100 categories. The
goal is to see if there are any patterns in the category selectivity profiles for the
different patches.

This figure might be hard to interpret with 100 categories in arbitrary order. To
reduce the density, perhaps we could do some combo of sorting according e.g.
dendrogram cluster ordering and/or looking at meta-category clusters (dogs,
small objects, etc). To cluster, can use CLIP features or sth.

● We might then try a hypothesis driven approach with the expected categories
○ Figure 3: same as Figure 2 but using fLoc images/categories

I am concerned that the images are OOD, esp since we have trained only on
ImageNet-100 rather than full ImageNet. But we can still try, for comparison to
TDANN

○ Figure 4: same as Figure 2 but using images from ITN domains.

Since there are only 3 domains, can also plot as 3 maps similar to the figure
above.

I think this suffers less from the OOD issue as Figure 3. But faces/scenes are still
quite OOD.



● Questions:
○ How to deal with the embed dim in each patch when computing patch

responses?
■ I think just reduce over the embed dim with e.g. l1 norm
■ Can also think about mining for selective units within each patch

somehow?
○ Where should features be extracted from?

■ I think immediately after the nonlinearity in each MLP. This shows which
features the layer is specifically computing, in expanded dimension, as
opposed to the cumulative residual features, in lower dimension, after
each block.

○ Is it ok to do the analyses at the patch level given that patches are not
independent?

■ Patches are linked via the expert mapping. Only the experts are
independent. But the patches are a convenient representation to do the
analysis on. I think it's fine. It should be no worse than TDANN, where
there is also implicit weight sharing between separate regions of the map.

■ we can do both, patch level and expert level

● different analyses:
○ patch level selectivity
○ expert maps/ individual expert selectivity
○ decoding
○ lesioning

● important, topomoe does not necessarily need to be a transformer, could also have a
convnet version



July 26
Helpful discussion with Nick to try to clarify parts of the TopoMoE architecture.

July 19
TopoMoE overview presentation. Recording here.

July 12
Connor:

● Did some training runs with new topo MoE.
● Architecture design:

○ Multiple stages
○ Each stage contains one or more ViT blocks
○ Each stage has a topographic representation map, the grid of tokens
○ To route between stages, we use position based associative pooling (similar to

soft-MoE)
○ Within a stage, we use topographic mixture of experts. Each expert has a learned

position embedding. Experts are assigned to positions in the map by association.
○ Same number of experts and expert layout for all blocks in a stage
○ Each expert has independent query and mlp weights. key, value, norm weights

are shared across experts.
○ First block of each stage uses cross attention to pull in high-res information from

the previous stage output, using the pooled output for computing queries.
○ Cross-entropy wiring cost

● Two stage tiny ViT:
○ Pooling maps from stage 0 -> stage 1

https://www.notion.so/stabilityai/recordings-for-brain-like-transformers-working-group-bd2708714c5d4be2a6678a72bef3754c?pvs=4#9b947b50307a4a29a09cd5f2c9a38065


○ Cross-attention maps for stage 0 -> stage 1

○ Expert maps for stage 1 (stage 0 has one expert)



● Three stage tiny ViT:
○ Pooling maps stages 0 -> stages 1

○ Pooling maps stages 1 -> stages 2



○ Expert maps stage 1

○ Expert maps stage 2

● Two stage no wiring cost
○ pool maps stage 0 -> stage 1



○ expert maps



July 5
Connor:

● Back from a few weeks off for conference and travel
● Added tests and training script for the topo MoE and quadformer model. You can find the

code in the topomoe folder in the "branching" branch. I'm ready to launch some training
runs.

● The only major change between the columnformers and topomoe training scripts is I've
switched to using timm for dataset creation/data loading. This will make it easy to run
experiments on the full imagenet, which I want to do pretty soon.

● Implemented a cross-entropy based wiring cost. I feel like it could be nice since it will
have the same gradient/scale as the main classification loss. It is basically the same as
the l1 wiring cost, just with a different distance-based weighting computed as

weight = -0.5 * dist**2 / sigma**2
weight = -F.log_softmax(weight, dim=-1)

● Alisa and I have been working on the blocksparse locally connected layer. See the open
draft PR here. Currently the test is failing because backward through the blocksparse
matmul doesn't work.

RuntimeError: addmm: computation on CUDA is not implemented for Strided + Strided
@ SparseBsr

● I'd like to submit an abstract for this work to the NAISys meeting. The meeting seems
like a perfect fit with a lot of great invited speakers. The deadline is July 12 but it's just a
single page text abstract.

● Feature correlation maps for untrained (randomly initialized) ViT on ImageNet-100
images.

○ Nb these maps look a lot like our earlier topographic expert maps.
○ This gives some evidence for how image statistics can drive correlated

responses which in turn can drive topographic specialization without
regularization

https://github.com/clane9/columnformers/compare/e383dc5eceddb044fd2c67e7f52e27384c1df338..branching
https://github.com/clane9/columnformers/tree/branching/topomoe
https://github.com/clane9/columnformers/blob/86d12316a5a5b83d540ce5415426c726ff9f4453/topomoe/models/wiring.py#L40
https://github.com/clane9/columnformers/pull/6
https://github.com/clane9/columnformers/pull/6
https://meetings.cshl.edu/meetings.aspx?meet=NAISYS&year=24


May 31
Connor:

● I implemented the topo MoE model with fixed expert assignment maps.

● The model consists of a sequence of stages. At the start of each stage, the number of
experts is increased by 4x (like a quad tree).

https://github.com/clane9/columnformers/blob/branching/columnformers/models/quadformer.py


Each expert has independent mlp weights, query weights, and possibly independent
key/value/proj weights as well. The independent mlp weights compute specialized
features, the independent queries learn specialized "attention" selection.

● To help with routing to these somewhat awkwardly placed experts, I implemented a
"pooling + branching" strategy. basically, the input is 2x2 average pooled and then tiled
as a 2x2 grid. This way each expert sees a (downsampled) copy of the input (much like
classic convnets with pooling in between stages). For later stages, this is done
recursively in every expert block.

● Training runs:
○ 01_base: classic ViT for reference [1, 1, 1, 1, 1, 1]
○ 02_branch-1: two stages. num experts: [1, 1, 1, 4, 4, 4]. one branch point.

conserved params (i.e. fixed total params)
○ 03_branch-1_nc: two stages. num experts: [1, 1, 1, 4, 4, 4]. one branch point.

scaled params (i.e. fixed per expert params; same flops as 01_base).
○ 04_branch-2: 3 stages. num experts: [1, 1, 4, 4, 16, 16]. two branch points.

conserved params.
○ 05_branch-2_nc: 3 stages. num experts: [1, 1, 4, 4, 16, 16]. two branch points.

scaled params.
○ 06_branch-1_sharekv: same as 02 but key/value/proj weights shared.
○ 07_branch-2_sharekv: same as 04 but key/value/proj weights shared.

● The models train fine, similar to earlier topo MoE (with learned maps). The larger
networks overfit a bit more (branch-2_nc). Perhaps this shows the model is trying to use
the extra capacity?



● branch-1 attention maps and matrices (base, branch-1, branch-1_sharekv)



● branch-2 attention maps and matrices (base, branch-2, branch-2_sharekv)

● hard to see clear differences. but perhaps the middle and right columns are sparser than
the base in the later layers.

● with decoupled key/value/proj weights, you see blockier attention maps.
● todo:



○ ablate the branch/pooling; see what happens if experts are fed quadrants of the
input. (shouldn't work)

○ analyze selectivity of each expert
○ scale up. imagenet-100 128px is too tiny.

May 24
Connor:

● I put together some slides summarizing our recent results.
● Something I want to try next to better understand the topo MoE results is a bit of a

simpler experiment using fixed expert assignment maps.

I think it should be easier to analyze the expert specialization and figure out how to get
the position based expert routing to work in this simpler setting.

I also like that it creates a bridge between our topo MoE and soft MoE.

In soft MoE, each expert has a fixed number of slots. And slots are filled with weighted
combinations of patches via an attention-like mechanism. What I'm proposing amounts
to letting slots = patch positions, and doing away with the separate Soft MoE routing
module. Tl;dr "attention is the only router you need".

https://docs.google.com/presentation/d/1dwfPW2AKH_xgBqS2XfBK6reRhbZLiBQzd8Yc8f05-G4/edit?usp=sharing


● @alisa: I will try to look into the blocksparse errors on my cluster over the weekend and
see if I get the same thing

● Alisa - trained the naive all-tnns implementation for 16 epochs

●

May 17 2024
Connor:

● I made a few changes to how recurrence is implemented to try to address the redundant
attention issue we've been seeing

○ Applying direct input from the previous layer into attention (commit). This means
queries are computed based on the output of the previous layer, rather than the
output of current layer itself at the previous timestep. I feel this is more consistent
with classic ViT where self-attention is applied to the output of the previous layer.
But in our case we can still cross-attend to other layer outputs, unlike classic ViT.

○ Add option for a mixture of experts Attention (commit). Previously we only
allowed MoE MLP. This is fine in the feedforward case. But in the recurrent case,
it has the possibly unwanted effect of sharing attention parameters across all
tokens and timesteps.

○ Add a pure recurrent ViT (no topography) (commit).

https://github.com/clane9/columnformers/pull/7/commits/4976bbc75f64d3a21767ca7549093986cbf2de7d
https://github.com/clane9/columnformers/pull/7/commits/2eb0391df055df260f501afe8fe53ad579be6980
https://github.com/clane9/columnformers/pull/7/commits/97b074a15268a0143773acdb2449f279f2f7058f


This just directly extends the classic ViT by computing all layers at each time step
and allowing layers to cross-attend to each other. (Nb afaik no one has done this
and it's pretty interesting in its own right imo.)

● Accuracy curves:
○ Adding the direct connections into attention doesn't clearly help (06_ff_skip_v4)
○ Adding the MoE attention does improve performance a tiny bit vs previous

(07_moe_attn). (Nb, these runs needed a lower batch size and lr to fit in
memory.)

○ Recurrent ViT works pretty nice (08_rvit). The training recipe is def not optimized,
but it reaches about the same val accuracy as the classic ViT (moe_01/01_E-1).

● Attention patterns for recurrent ViT. Looks kinda interesting! Definitely some cross-layer
(off-diagonal) communication happening.



● By contrast, the recurrent topo MoE model still has more redundant looking attention. So
just adding the MoE attention did not really fix things.



● literature search for papers that already did rViT
● maybe focus on one publishable unit at a time
●



May 10 2024
Connor:

● The main thing bugging me about the current TUT results is the redundancy in the
attention weights. Each layer has basically the same attention weights at every time
step. Whereas in the classic ViT, you see a lot of interesting variation in the attention
weights across layers.

● I think the reason is probably that we are sharing the parameters of the attention module
across all layers.

● I want to do a few baseline experiments exploring this with ViT:
○ Recurrent ViT with tied Attention and MLP (basically UT)
○ Recurrent ViT with tied Attention and untied MLP
○ Recurrent ViT with untied Attention and untied MLP

May 3 2024
Connor:

● Did some initial experiments combining recurrence and topographic MoE. I'm calling the
architecture a Topographic Univeral Transformer (TUT), following the UT and SUT.

● See a draft PR here with some more discussion
● Initial run performs much better than our previous attempt at a recurrent architecture:

○ TODO: a pure UT baseline that adds recurrence to ViT and nothing else. This
would actually be pretty interesting to see if feedback connections naturally
emerge and if it improves performance. I don't think anyone's done this (?)

https://github.com/clane9/columnformers/pull/7


● The attention matrices look degenerate though. Only the first "layer" is really active in the
attention weights. Similarly with the feature correlations

○ Q: how can performance be ok with only the first layer 64 tokens being used?
Are 64 tokens enough space?

● The coefficient maps for the first layer are very interesting, but for later layers they are
degenerate



● I added direct skip connections between layers, which made things look better. Note the
communication both above and below the block diagonal!



● But still it feels there is something not perfect about it. Maybe too much redundancy in
the attention values between blocks.

● The expert coefficient maps (depth x experts) are quite interesting! spatial localization,
consistent receptive field across depth, some depth specialization.

● But note that the direct skip connection did not really improve performance. Basically the
extra tokens are not really being used.

○ Q: why aren't the extra tokens useful at all? Shouldn't the model be able to make
use of the extra representational space?

○ Q: You see some experts localized to later layers (eg 3rd from the right, last 2-3
layers). But "activating" these layers with direct skip connections doesn't really
seem to contribute to performance. What's going on? Does it just not matter
whether experts are distributed across 64 vs 384 tokens?



Apr 26 2024
Connor:

● Finished implementation of "topographic mixture of experts" (proposed new name,
subspace mixture of experts was non specific)

● Ran a sweep of training runs on ImageNet-100 (vit tiny 6 layer, 50 epochs) with varying
expert configs:

○ 1 expert (i.e. ViT baseline)
○ 2 experts per block
○ 4 experts
○ 1-2 experts: [1, 1, 1, 2, 2, 2]
○ 1-4 experts: [1, 1, 1, 4, 4, 4]
○ 1-2-4 experts: [1, 1, 2, 2, 4, 4]

● Crucially, equal number of params in every case.
● Wandb report here.

https://github.com/clane9/columnformers/pull/5
https://api.wandb.ai/links/cmi-dair/71u7g80u


● 2 experts per block:
○ experts are allocated in a spatially topographic way! note that no regularization

was used, this emerged naturally!
○ you see experts for center/surround, top/bottom, etc
○ assignment distributions also appear sharper in deeper layers

● 4 experts per block:
○ Similar. distributions in early layers are even softer. Maybe it doesn't want to have

to specialize here??
○ Across images, no consensus on what expert to pick in early layers.
○ at later layers, you've done more routing, you have wider fov. all of these make it

easier to choose a consistent expert for each position.
■ maybe you don't see this in the classic sparse moe. something to test

● [1, 1, 1, 4, 4, 4]



○ Now we use 4 experts, but only for the last 3/6 layers
○ Coefficient maps look quite similar to the 4 experts per block case

● [1, 1, 2, 2, 4, 4]

● attention maps and attention grid for E-1-4 ([1, 1, 1, 4, 4, 4] case)
○ not sure if there's anything to take away here. but kinda interesting to stare at



● next steps:
○ Run a [4, 4, 4, 1, 1, 1] case to further check hypothesis that experts are better

used in later layers
○ Compare closely with methods/results of other MoE papers
○ Investigate what the different experts are specialized for

■ try classification with a spatial pooling head and see if different categories
attend to different experts

■ investigate which stimuli maximally/minimally drive activity in each expert
○ Understand why spatial topography naturally emerged without regularization
○ Scale up experiment
○ Figure out the inference time flops for the MoE network
○ Paul: would you get topographic routing maps in the typical sparse routing MoE?

■ Could be something good for someone to implement
● Alisa:

○ Question about spatial similarity loss and alpha values in All-TNNs paper
○ Model is implemented but needs speeding up (currently backprop takes ~16s)
○ Some issues training in colab

Apr 12 2024
Alisa:

● Made a start on implementing the All-TNNs paper in this repository. There are three
versions of the topographic layer, one that I came across here, it’s basically just conv2d
but with untied weights. I also created two other versions, one is pretty much the same

https://arxiv.org/abs/2308.09431
https://github.com/alismil/all-tnns-implementation/blob/main/all-tnns/model.py
https://discuss.pytorch.org/t/locally-connected-layers/26979/2


as above and another one only assumes one in and out channel and creates a sparse
matrix of all the weights first (which is input_height*input_length x num_kernels) and
multiplies the input (flattened into a vector) by it.

● The authors are very vague on how they work out the dimensions of their layers in
Figure 1, they say that they use tensorflow’s LocallyConnected2D layer and unfold each
channel dimension to create a sqrt(channels)*height x sqrt(channels)*width 2D layer.

○ CL: I also don't really understand their description. Btw I emailed them to see if
they'd be willing to share code. They're open to it but probably have to finish their
revisions first.

● Some questions/thoughts:
○ Having several channels, they pass each input patch through several filters, then

I guess when they ‘unfold’ the layer, the outputs for the same patch are near
each other?

○ I think it makes more sense to keep the output channels since otherwise the layer
dimensions drop off too quickly.

○ If we assume they use some padding P, stride S and C out channels, with square
input of dimension D, and kernel dimension K, there are many combinations of P,
S and C that satisfy sqrt(C) * (floor((D - K + 2 * P) / S) + 1) = out_dimension.

● Next steps:
○ Add functionality to unfold the 3D layer into 2D
○ Work out how to achieve their dimensions
○ Implement the spatial similarity loss
○ Create the training loop

Mar 29 2024
Connor:

● Working on MoE implementation that more closely follows the existing literature
○ Vision MoE: classic sparse MoE in a vision setting. (lucidrains impl)
○ Soft MoE is supposed to be a better approach to MoE which avoids

non-differentiable top-k selection leading to training instability.
○ There is also soft merging of experts, which combines expert weights similarly to

us. The paper seems a bit rushed though and was rejected from ICLR.
○ One challenge with sparse top-k routing is getting gradients through to the

bottom e-k experts. With a router layer, you don't have this problem. But in our
case we have static routing coefficients (num_tokens, num_experts)

● We have mostly been thinking about wiring cost as a way to promote smooth
topography. We should also consider other (more direct) approaches

○ smoothness regularizer applied to expert routing coefficients. E.g. total variation.
○ spatial weight similarity loss from All-TNN. (Actually would be quite similar to ^^)

https://proceedings.neurips.cc/paper/2021/hash/48237d9f2dea8c74c2a72126cf63d933-Abstract.html
https://github.com/lucidrains/soft-moe-pytorch
https://arxiv.org/abs/2308.00951
https://openreview.net/forum?id=QHzzAU7Qf9&referrer=%5Bthe%20profile%20of%20Colin%20Raffel%5D(%2Fprofile%3Fid%3D~Colin_Raffel1)


● Would like to see someone work on implementing the All-TNN from
(https://arxiv.org/abs/2308.09431).

○ This is the most closely related work. But their code is not released yet. If we can
replicate their topography, it should give insight for how to achieve our own kind
of topography.

● Results from soft MoE on expert allocation. later layers work better

Ihab :
● Initial results of increasing the number of experts gradually
● Working on a figure that shows the distributions of coefficients per layers and tokens

○ loading checkpoint state could also provide quick answer
● Exploring performance with high number of experts but same number of params as ViT

Alisa:
Interesting paper to discuss: https://arxiv.org/pdf/2112.04035.pdf
Some questions from reading the SUT paper and how we could implement it for our use case:

● Do we want to use a router? (Will require us to introduce an auxiliary loss, also mutual
information maximisation?)

● Mixture of Multi-head Attention?
● Absolute vs relative position embeddings?
● When we tried recursion before, did we implement some sort of halting mechanism?

Mar 22 2024
Connor :

● Current/possible directions:
○ SuMoE: subspace mixture of experts as a way to adapt the degree of weight

untying
■ What is the best way to formulate the MoE combination? Linear

combination, softmax?
● In particular what about coefficients that depend on input?
● The brain does kind of route inputs to different weights depending

on content. How do we model this?
■ What is a good way to initialize the expert weights/coefficients?

https://arxiv.org/abs/2308.09431
https://arxiv.org/pdf/2112.04035.pdf
https://arxiv.org/pdf/2310.07096.pdf


■ Can we match ViT performance with matched number of parameters and
num experts > 1?

■ Should we test out classic sparse MoE in our setting.
■ What is the best number of experts per layer

● num experts = 1 for layers 1-4,
● num experts = 2 layers 4-8,
● = 4 layers 8-12,

■ Would keeping some memory of what experts were used in the previous
layer and/or their individual outputs (in addition to summing them as done
in sparse MoE) lead to more specialization within experts and better
routing of information?

○ Wiring cost regularization.
■ Does wiring cost regularization promote topographic structure?
■ What is an experimental setting where we can study wiring cost in relative

isolation? All-TNNs?
■ What are good ways of formulating wiring cost?
■ What is the state of literature regarding wiring cost?
■ Nb, you should only be able to get nice topographic structure in the expert

layout by using wiring cost. otherwise the layout should end up being
random.

■ premise: weight untying + wiring cost = topography
○ Recurrence.

■ Can we get depthwise recurrent architecture to perform reasonably in a
vision setting?

■ E.g. can we get the sparse universal transformer to work in a vision
setting? Have any papers done this?

○ Communication.
■ We considered various formulations for inter-column communication

(self-attention, fixed query "selection", linear mixing).
■ What is the performance of each communication strategy, in both tied and

untied weights settings?
■ Are there small adjustments to make to the formulation/initialization with

the alternative communication strategies to make them easier to train
with?

○ Architecture optimization
■ In basically all experiments, we've noticed that architecture changes tend

to make training slower, require lower learning rate, gradient spikes.
■ How can we make these novel architectures easier to train?
■ Do we need to think through initialization/weight conditioning?
■ Do we need to modify normalization or add stabilizing layers like

LayerScale?
■ Do we need to be re-tuning hyper-parameters for each architecture

change?

https://arxiv.org/abs/2310.07096


■ Are there tools (e.g. signal propagation) we can use to understand why
changing architecture impedes training?

○ Replicating All-TNNs
■ As the closest prior work, maybe we should try to replicate some of their

results. It might give some insight into the above issues. The code is also
not available yet afaik.

○ Scaling up
■ It's possible that we are playing around at too small of scale. We might

need to take a few shots at a bit larger scale (~8 gpu x 24 hours).
○ Non-vision domains

■ Vision is the primary focus, since the primate visual cortex is the primary
motivation. However we could consider trying out the architectures in
other domains (eg speech, text).

○ Colab playground
■ Improve the colab playground notebook to make it more approachable

and useful for small scale experiments.
■ Think about what experiments can be done effectively at small scale.

○ Repo maintenance
■ Keeping README up to date
■ Literature review and bib updates
■ Information for new contributors
■ Code refactoring

● Thoughts on shooting for a CCN 2024 2 page extended abstract? (deadline 4/12)

Mar 14 2024
Ihab :

● Explored scaling laws of numbers of experts (linear combination), uniformly allocated,
from 1 to 96 expert (with 64 tokens)

○ Using linear combinations with a mixture of experts (>1) results into lower
performance than classic vit (=1).

○ Using a higher number of experts improves performance, but doesn’t close the
gap to classic vit

● Implement & explore usage of softmax instead of linear combination

https://arxiv.org/abs/2302.10322
https://2024.ccneuro.org/


● Specific questions :
○ Softmax : What is the matrix of the learnt coefficients at the end of training for

each token?
○ Can we couple the coefficients to the input image/token like for attention? Would

we notice specific experts specializing in different classes?
○ Repeat experiments with different seeds
○ Progressive allocation effect
○ Wiring cost

Mar 1 2024
Connor

● This project is interested in topographic functional specialization. Why does the brain
have it?



● One idea is that specialization lets you compute specialized features for each input
● We see a similar motivation at play in sparse mixture of experts models

○ rather than compute all features for all inputs, only compute a subset of features
for each input

○ maintain expressivity while reducing flops.

● Here we want to explore this connection between mixture of experts and functional
specialization.

● We introduce a topographic subspace mixture of experts (SuMoE) layer
○ Each position in the layer grid learns a unique set of weights.
○ The weights are computed as linear combinations over a pool of M experts.

● Concrete questions:
○ Does having experts help?

■ performance / flops
○ What is the optimal allocation of experts to each layer?

■ Uniformly allocated?
■ Progressively allocated (1, 1, 2, 2, 4, 4)

○ Does penalizing wiring cost promote topographic arrangement of experts?
■ SuMoE creates opportunity for topography by assigning experts positions
■ Wiring cost will promote topography

Link to github

https://github.com/clane9/columnformers/blob/3cb69f691fdf5f155cb65bf490332eef6a7b5346/columnformers/models/columnformer.py#L283


class MixtureMlp(nn.Module):

def __init__(

self,

in_features: int,

hidden_features: Optional[int] = None,

out_features: Optional[int] = None,

seq_len: Optional[int] = None,

rank: int = 16,

act_layer: Optional[Layer] = nn.GELU,

bias: Union[bool, Tuple[bool, bool]] = True,

drop: Union[float, Tuple[float, float]] = 0.0,

):

super().__init__()

assert seq_len is not None, "seq_len required for MixtureMLP"

self.rank = rank

hidden_features = hidden_features or in_features

out_features = out_features or in_features

biases = to_2tuple(bias)

drop_probs = to_2tuple(drop)

act_layer = nn.Identity if act_layer is None else act_layer

self.fc1 = MixtureLinear(

in_features, hidden_features, rank=rank, bias=biases[0]

)

self.act = act_layer()

self.drop1 = nn.Dropout(drop_probs[0])

self.fc2 = MixtureLinear(

hidden_features, out_features, rank=rank, bias=biases[1]

)

self.drop2 = nn.Dropout(drop_probs[1])

# learned static linear coefficients per position

# each position learns a unique mlp in the subspace spanned by the experts

self.coef = nn.Parameter(torch.empty(seq_len, rank))

self.reset_parameters()



def reset_parameters(self) -> None:

# init so that coef @ weight is ~ N(0, 0.02)

std = (0.02 * self.rank**-0.5) ** 0.5

trunc_normal_(self.coef, std=std)

def forward(self, x: torch.Tensor) -> torch.Tensor:

# standard mlp forward pass

# maybe we should also try softmax coefficients?

x = self.fc1(x, self.coef)

x = self.act(x)

x = self.drop1(x)

x = self.fc2(x, self.coef)

x = self.drop2(x)

return x

class MixtureLinear(nn.Module):

def __init__(

self, in_features: int, out_features: int, rank: int = 16, bias: bool = True,

):

super().__init__()

self.in_features = in_features

self.out_features = out_features

self.rank = rank

self.weight = nn.Parameter(torch.empty((out_features, in_features, rank)))

if bias:

self.bias = nn.Parameter(torch.empty(out_features, rank))

else:

self.register_parameter("bias", None)



self.reset_parameters()

def reset_parameters(self) -> None:

# init so that coef @ weight is ~ N(0, 0.02)

std = (0.02 * self.rank**-0.5) ** 0.5

trunc_normal_(self.weight, std=std)

if self.bias is not None:

nn.init.zeros_(self.bias)

def forward(self, input: torch.Tensor, coef: torch.Tensor) -> torch.Tensor:

# B N D

# N R

# linear combination of weights at each position. cf model soups

weight = (coef @ self.weight.transpose(1, 2)).transpose(0, 1)

if self.bias is not None:

bias = coef @ self.bias.t()

output = torch.einsum("bnc,ndc->bnd", input, weight)

if self.bias is not None:

output = output + bias

return output

Feb 16 2024
Connor

● I found some important related works to think about:
○ Universal transformers: Classic transformer but with only a single large block that

is unrolled recursively for multiple steps. Basically the same as our idea for
recursive unrolling.

○ Sparse mixture of experts: Most are probably familiar with this. The key point is
that each block consists of several "expert" feedforward modules. Each token is
processed by only a subset of them. The rationale is to increase model capacity
(i.e. parameter count) without increasing flops (sound familiar?). Untying weights
can be seen as an extreme case where each token is processed by its own
expert.

○ Sparse universal transformer (SUT): The combination of the above two. I was
disappointed to find this, bc I was gonna suggest we try it. Basically the
architecture consists of a single block containing many experts, which is unrolled

https://arxiv.org/abs/1807.03819
https://arxiv.org/abs/2209.01667
https://arxiv.org/abs/2310.07096


recursively. This is very closely related to our recurrent columnformer
architecture. The only difference is here experts are matched to tokens by a
router, whereas in our case each column "expert" is associated 1-1 with a token.

○ A Review of Sparse Expert Models in Deep Learning
● Based on these works, and discussion from last week, I'm trying to sketch the main

argument for this work (or at least one candidate)
○ Current vision models like CNNs and ViTs exploit the inductive bias that the same

set of features are useful at every position.
○ This is motivated in part by the retinotopic, equivariant organization of early

primate visual cortex.
○ However, this organizational principle does not apply to the entire visual cortex.
○ Middle and higher visual stages exhibit striking topographic regional

specialization. For example, independent dorsal and ventral streams,
independent streams for small, medium, and large objects, and category
specialized areas for faces, bodies, objects, places, etc.

○ Similarly, feature specialization has recently become useful in deep networks. In
Sparse Mixture of Experts (SMoE) models, each position of the representation
map is selectively processed by a subset of features, optimally chosen by a
router.

○ In both cases, the intuition is to increase representational capacity without
increasing compute cost.

○ In this work, we relax strict position-wise weight sharing by introducing a
subspace mixture of experts layer (SuMoE).

○ In the SuMoE layer, the weights at each position are computed as a linear
combination of expert weights, using static learned coefficients per position.

○ By adapting the number of experts, we can control the degree of weight sharing
from fully shared (num experts = 1) to fully untied (num experts = sequence
length).

○ We replace the feedforward modules in the standard ViT with SuMoE
feedforward modules.

○ In addition, we use a wiring cost penalty to promote smooth, topographically
organized expert layouts within each layer.

○ We find that: (focusing on feedforward, leaving recurrent and growth stuff for
follow-up)

■ Deeper layers benefit from more experts (Or maybe num experts = 1, i.e.
classic ViT is optimal for each layer. Which would be interesting and
somewhat surprising. Ultimately, it's an empirical question what the
optimal number of experts is.)

■ The emergent topographic layout of experts mirrors primate visual cortex.
In middle layers, we see the emergence of distinct streams, which further
divide into category specialized patches in later layers.

■ Global, dynamic attention based communication is necessary for the
emergence of topographic organization. Strict local communication does
not allow the emergence of globally distinct streams.

https://arxiv.org/abs/2209.01667


● This more narrow, somewhat different scope might be of interest to a different subset of
people. E.g. the MoE transformer architecture is broadly interesting and trendy in the
pure ML space right now.

● Basically, we are trying to answer: Why does topographic functional specialization
emerge in visual cortex? The hypothesized answer is that specialization increases
expressivity while saving compute.



Feb 9 2024
Ihab

● Ran incremental experiments on simplifying the transformer and adding locality.
● Attempt to finding a balance between good performance and model size before the

untying.
Connor

● Experimented with different "attention" mechanisms
○ classic: classic multi-head self-attention
○ selection: simplified mechanism. the input is used as both key and value. the

query is static and does not depend on the input. the idea is to model the fixed
stimulus tuning we see in visual cortex.

○ mixing: even simpler mechanism. the attention matrix is altogether static and
does not depend on the input. this is very close to what ConvNext and
MLP-Mixer do.

○ linear mixing: mixing without softmax. This is even closer to ConvNext and
MLP-Mixer. (ConvNext applies mixing depthwise, which is equivalent num heads
= dim. Mixing matrix is convolutional (toeplitz). MLP-Mixer uses a single mixing
matrix equivalent to num heads = 1, and applies a nonlinearity.

● Main message:
○ All-TNN is to AlexNet as columnformer is to ViT

■ Why untie weights? Because untying weights enables non-homogeneous
layers, which in turn enables topography

■ Why do we need a transformer version of the untied-weight-network?
Strict local receptive field vs unconstrained receptive field with locality
bias.

○ Additional novel components
■ recurrence
■ geometry
■ scaling by growing
■ low-rank untied weights
■ globally connected information hubs

● ViT registers are kind of like hubs?
(https://arxiv.org/abs/2309.16588)

https://api.wandb.ai/links/labrats/hftkldfd
https://api.wandb.ai/links/labrats/52cx40me




Feb 2 2024
Connor

● See the slides we presented to the Kietzmann Lab last week. These have an updated
overview of the model and some initial results.

● I'm interested in trying out a simpler form of "attention" following ConvNext and
MLP-Mixer. Rather than dynamic key-query based attention, we use a static (but
learned) "mixing" matrix

https://docs.google.com/presentation/d/1xjXoj93S9T1MCihHfRgG8UpcLHGBx8z2mZT-vbDI1hk/edit?usp=sharing


● Ihab: MLP was made for tied weights setting. Can we rethink the MLP and find
something that works better in the untied setting? Nb every change to MLP we made
hurt performance a lot.

● Paul: we can work towards visualizing the class-specific spatial pooling maps. We need
this to show evidence that the basic topographic idea works.

class Mixing(nn.Module):
"""
Multi-head static feature "mixing" similar to ConvNext and MLP-Mixer.
"""

def __init__(
self,
dim: int,
seq_len: int,
groups: int = 8,
attn_drop: float = 0.0,

):
super().__init__()
assert dim % groups == 0, "dim should be divisible by groups"
assert seq_len, "seq_len required for mixing"

self.dim = dim
self.seq_len = seq_len
self.groups = groups
self.group_dim = dim // groups

self.weight = nn.Parameter(torch.empty(groups, seq_len, seq_len))
self.bias = nn.Parameter(torch.empty(seq_len, seq_len))
self.attn_drop = nn.Dropout(attn_drop)
self.reset_parameters()

def reset_parameters(self) -> None:
trunc_normal_(self.bias, std=0.02)
nn.init.zeros_(self.weight)

def forward(self, x: torch.Tensor):
B, N, C = x.shape
x = x.reshape(B, N, self.groups, self.group_dim).transpose(1, 2)

attn = self.weight + self.bias
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = attn @ x

x = x.transpose(1, 2).reshape(B, N, C)
return x, attn





Jan 19 2024
Connor

● Rewrote model implementation to support a step-by-step ablation from the columnformer
back to the transformer.

● Integrated with train script and debugged. Will be launching some runs.
● Proposed ablation order:

○ Simplifying the transformer (vision_transformer_tiny_patch16_128):
■ reduce mlp dim
■ single head attention
■ remove attention value and proj

○ Adding transformer locality:
■ add wiring cost promoting local attention
■ add attention bias
■ local attention bias initialization
■ which transformer variants do local attention?

○ Untie weights (vision_columnformer_ff_tiny_patch16_128):
■ untie mlp weights
■ untie attention weights
■ untie norm weights

○ Add recurrence (vision_columnformer_r_tiny_patch16_128):
■ flatten layers into sheet and unroll recurrently

● The plan is to train each of these tiny versions (6 layer, dim 384) of each of these
variants on imagenet-100 (128px, 100 epochs). At the end, we want a figure like this:

https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/models/columnformer.py
https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/train.py
https://github.com/clane9/columnformers/blob/9f09a1d2cc9c2ba67ecae64e4ade2b18be5bb0e4/columnformers/models/vision_columnformer.py#L139C5-L139C40
https://github.com/clane9/columnformers/blob/9f09a1d2cc9c2ba67ecae64e4ade2b18be5bb0e4/columnformers/models/vision_columnformer.py#L162C5-L162C44
https://github.com/clane9/columnformers/blob/9f09a1d2cc9c2ba67ecae64e4ade2b18be5bb0e4/columnformers/models/vision_columnformer.py#L192C5-L192C43


● would love volunteers to take on one of the groups of models in the ablation

● alternatively, experiment with all combinations in each block
● no need to overcommit to this order. exploring within a block to find the best order makes

sense.
● Why do we even need to reduce the attention and mlp parameters?

○ untying weights increases parameter count by a factor of the sequence length
○ importantly, it doesn't the flop count. so models should be just as efficient to train
○ the challenge is that a massively over-parameterized model might overfit. but this

doesn't mean we shouldn't try it.
● 2 versions of experiment: preserve flops or preserve parameters

○ to test whether it's important to limit columnformer parameters, we can do two
versions of the ablation experiment, one with the first 3 transformer simplification
steps, one without.

○ simplifying transformer = matching parameters = reducing flops
○ matching transformer = increasing parameters = matching flops



Jan 12 2024
Connor

● Announcement: We are meeting with members of the Kietzmann lab to talk about the
columnformers idea and topographic ANNs in general. This is the group who developed
All-TNNs. The meeting will be on Wed 1/24 at 11am EST. Will post an official
announcement in the channel.

● Development updates:
○ Added a training script for larger scale training. Supports distributed training,

mixed precision, wandb logging, figures and metrics hooks, etc.
○ Possibly overkill and should instead use something like lightning. Lmk what

people think.
● Question from Mohammed: Why don't we also untie weights depthwise?

○ In principle, you should not need to. The "diagonal" path through the network is
precisely what you would have if you untied weights depthwise. The recurrent
case is strictly more general.

○ Nonetheless, it will be a good idea to try. More general does not necessarily
mean better.

Paul
● Has some questions after looking through the codebase

https://arxiv.org/abs/2308.09431
https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/train.py
https://discord.com/channels/1025299671226265621/1182743404732485732/1193906322459078757


Jan 5 2024
Connor

● Added a related work section to the repo. This is a good place to find relevant
background. Anyone please feel free to open PRs to add more papers!

● Started my own development branch where I'm working on some stuff.
○ datasets_factory.py: create imagenet-100, micro-imagenet-100 datasets with

timm transforms.
○ Being able to observe what's going on during model training will probably be

important to understand and diagnose problems. Started adding some figures
and metrics. The idea is for these to follow a general interface to make it easy to
register to a model. (Q: I feel like pytorch lightning must support this sort of thing,
but I'm not too familiar with it. Does anyone feel like that's what we should be
using?)

○ Added a ViT "baseline" classification model. Important to know what the ViT
performance is for our specific task (imagenet-100 128x128 100 epochs). We
expect this to be more like a ceiling than a baseline though. Goal is to get as
close as we can.

Ihab
● Contributed imagenet-100 benchmark notebook
● Initial baseline performance. 23%.

https://github.com/clane9/columnformers/blob/main/related_work/RELATED_WORK.md
https://github.com/clane9/columnformers/tree/develop/clane9
https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/data/datasets_factory.py
https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/inspection/figures.py
https://github.com/clane9/columnformers/blob/develop/clane9/columnformers/inspection/metrics.py
https://github.com/clane9/columnformers/blob/8b3994c623b77d1aa1477a48fe45eba3249674a7/columnformers/models/classification.py#L118
https://github.com/clane9/columnformers/blob/main/notebooks/imagenet-100_benchmark.ipynb
https://github.com/clane9/columnformers/blob/main/RESULTS.md



