&
" FNS user manual

Website: hitp://www.fnsneuralsimulator.or:
GitHub: http:/github.com/fnsneuralsimulator (FNS, 2017)

Main reference article: Susi, G., Garcés, P., Paracone, E., Cristini, A., Salerno, M., Maestu, F., &
Pereda, E. (2021). FNS allows efficient event-driven spiking neural network simulations based on a
neuron model supporting spike latency. Scientific reports, 11(1), 12160. Open Access Article.

Contents

1. Software installation
1.1 Regular installation
1.2 Run using Docker

2. Simulation process
2.1 Simulation procedure
2.2 Visualization of neural activity
2.2.1 MATLAB
2.2.2 Python
2.2.3 Animation with Gephi

3. How to design a simulation
3.1 Experiment command
3.1.1 Commands for the Docker version of FNS
3.2 An in-depth look at FNS files, folders and fields.
3.3 Simulation issues

4. Simulation examples

References

o o o a A DA ODNMNDN -

-
w o

- -
o O

http://www.fnsneuralsimulator.org
http://www.fnsneuralsimulator.org/
http://github.com/fnsneuralsimulator
https://www.nature.com/articles/s41598-021-91513-8

1. Software installation

1.1 Regular installation

1. Install Java (SE) JDK' from the JAVA official page 2.
2. Download the ENS package and unzip it.
3. That’s it! You are ready to use FNS.

Optional. If you want to re-compile the software for some reasons (e.g., testing purposes), please

follow the steps below:

- download and install MAVEN. It can be done from the official page

- As already done for Java JDK, add also the bin directory of MAVEN to the PATH environment
variable. For Linux users Maven can be also downloaded from the official distribution
repository;

- open powershell and go to the FNS root;

- run the following command (please keep your computer connected to the internet):

PS C:\FNS_folder> .\compile.bat
Linux users can re-compile by running:

~/FNS_folder$./compile

NOTE: In general, all the commands shown in this guide can be used in Linux with the exception of
substituting the slash with the backslash. The user will be informed about possible differences
between the commands for the two operating systems.

1.2 Run using Docker

Alternatively, you can run FNS with Docker, using the public Docker Hub image.
If you do not have Docker installed, please follow the Docker installation instructions for your system

here: https://docs.docker.com/install/
Please find the commands to execute the Docker version of FNS in Par.3.1.1.

' we recommend version 11 onwards.
2 in some cases, you may need to add the bin directory of JDK to the system environment variable
PATH, and set the JAVA_HOME environment variable to point to the jdk folder.

http://www.oracle.com/technetwork/java/javase/downloads/index-jsp-138363.html
https://github.com/fnsneuralsimulator/FNS-simulator/archive/master.zip
https://maven.apache.org/download.cgi
https://docs.docker.com/install/

2. Simulation process

EXPERIMENT FOLDER

/ Configuration files \

config.xml

Config wizard
—1

v

1
0]

Subject’s DTI matrix

connecieigicy FNS Simulator

— — PS C:\FNS> .\start.bat experimentl

... or connectivity of
synthetic network motif

Simulated activity -

‘Firing.csv -

\ Burning.csv)

Fig.1: Three steps in order to obtain simulated neural activity. A) Preparation of the input data: config.xml file (manually or
through the Config wizard online tool), and connectivity folder (real brain data extracted using DTI technique, or artificial
network motifs); B) Simulation through FNS; C) Reconstruction of the electrophysiological-like signals using the FNS output
files (Firing.csv and/or Burning.ecsv, introduced in Par 2.1), using the matlab scripts present in the ENS GitHub

repository.

J ,,N""wLJ""'-mF‘.W“r"v,.\"'"‘

2.1 Simulation procedure

a. To launch a new simulation®, the user has to type the so-called experiment command from the
FNS folder. The experiment command has the following structure (for Windows and Linux,
respectively):

PS C: \FNS_folder> .\start.bat [SIMULATION_FOLDER\EXPERIMENT] [SWITCHES]

~/FNS_folder$./start [SIMULATION FOLDER/EXPERIMENT] [SWITCHES]

where [SIMULATION FOLDER] is the folder which contains the simulation packages, and
[EXPERIMENT] is the package which contains the set of configuration files for a single
simulation (i.e., the file config.xml and the folder connectivity).

Then press enter to start the simulation.

The reader can find a detailed description of the experiment commands’ fields in Par.3.

% you can simply use the Windows powershell, or the Linux terminal to execute these commands

https://www.fnsneuralsimulator.org/config_wizard/
https://github.com/fnsneuralsimulator/FNS-scripts_and_tools
https://github.com/fnsneuralsimulator/FNS-scripts_and_tools

b. During the simulation, FNS displays 3 sets of simulation data: initialization, execution,
simulation stats:

Initialization.

On the basis of the file config.xml and those present in the folder connectivity, nodes
(neuronal populations, or regions) and edges (fibre tracts) of the network are created. Inner
states of all neurons are initialized to random and subthreshold values (i.e., uniformly
distributed between 0 and 1).

Execution.
The program proceeds with the simulation of consecutive temporal slices, displaying
information about the progress of the process.

Simulation stats.
At the end of the overall simulation the following data are shown to the user:

- Overall duration of the simulation (in terms of execution time);

- Time employed by the initialization procedures (extraction of data from the configuration
files and synthesis of the structures).

- Minimum tract length among all the inter-node connections (in mm);

- Duration of the cycle time during the simulation (in terms of simulated time);

- Total number of inter-node connections;

- Number of missed fires, i.e., fires that have been discarded due to an unsuitable sizing of
the BOP. Note that, since by default we set a cycle time slightly smaller than the BOP,
missed fires are naturally avoided;

- Curve goodness, referred to the gamma distribution generated for the intra-node
connection lengths (just in case negative values are generated).

c. FNS stores information about the activity of the network in the folder
SIMULATION FOLDER\EXPERIMENT\OUTPUT. Network activity is organized in two .CSV
files, one for the departing spikes (firing events) and one for the incoming spikes (burning
events) [1], with reference to the node, or set of nodes considered:

-burning.csv : contains the data of burning events (neurons participate as receiver)*.
- firing.csv : contains the data of firing events (neurons participate as emitter).

Considering a node composed of n neurons [0 to n-1], possible additional external inputs will
be regarded as pertaining to the same node, with their neuron id starting from n.

2.2 Visualization of neural activity

Using the output files firing.csv and burning.csv, the user can easily visualize both spiking activity and
post-synaptic activity, respectively. Some visualization scripts are available in a proper GitHub folder.
Moreover, we allow the user to explore network structure and activity in Gephi - specialized graph
visualization software.

* Note that in the burning. csv file not all the burning times are listed in increasing time order, due to
the specific BOP-based technique adopted (see [1] for details).

https://github.com/fnsneuralsimulator/FNS-scripts_and_tools

We introduce some examples below.

2.2.1 MATLAB

Si postsynaptic signal

i ﬂulunlﬁu“ e A A

i b’L"u'lf‘f'm‘w»WﬂN.J"fuvJm«r-w-,wwmwwﬂrfwﬂwwfw-ﬁﬂ“lhw

=" 1o IJ ldﬂ' M llﬂw‘r‘lh{l“f\hﬁ%'t.l‘tJ".ﬁ.'.J;‘.w'm,'Lr',r",f'-pr“,-*,h".r1r'-"p"f‘«'x’\ﬂu'\r‘ﬂ'\frw"u'\f‘vjf.llir"r'ﬂ‘-ﬂ%ﬁ e

0 50 100 150 200 250 300 ‘0 50 100 150 200 250 300
time {ms) time (ms)

The user can easily visualize both raster plot and local field potential, evoked at the specified nodes
using proper visualization scripts (FNS_spiking.m and FNS_postsynaptic.m, respectively).

2.2.2 Python

@ g |

FNSvisualization.py is an option if you want a structural based visualization: plot network’s activity
over time with a theoretical spatial distribution of nodes. Choose between two levels of analysis
neuronal and regional (averaging neurons’ activity).

Specific Python modules have to be installed in order to be able to run the script®, which can be
installed directly through the execution of pip install -r requirements.txt

® The modules needed for the execution of FNSvisualization.py are: python-igraph (> 0.8.2),
pandas (> 1.1.0), plotly (> 4.9.0), numpy (> 1.15.4), opencv-python (> 4.4.0.42) requests (>=2.24.0),
fsspec (> 0.8.4)

FNS neural simulator. Manual V3.1

2.2.3 Animation with Gephi

To use Gephi software to explore network structure and activity dynamics: export FNS data in Gephi
compliant files®, then import them in Gephi (Data Laboratory section -> Nodes|Edges -> Import
Spreadsheet) to create the network, visualize, analyze and animate it.

Once data is imported, you can go to the Overview tab and visualize nodes. Apply a layout (e.g.,
Fruchterman Reingold) and press run to spread the nodes. Then customize the appearance in the
upper left box. To animate the data, choose nodes’ colour by ranking (attribute: events), click on the

button aside apply to choose Auto-apply; finally, tap on Enable Timeline at the bottom of the screen,
shorten time window and play.

® We are working on an option for FNS (I.e. the switch “-g”) to generate these files directly as output of
the simulation. By now, we provide a python script (l.e. gephiConvert.py) to transform FNS matlab
compliant output (obtained with the switch -m) into two Gephi compliant files: gephi_nodes.csv
and gephi_edges.csv.

3. How to design a simulation

3.1 Experiment command

As described in Par.2, the experiment command is articulated as follows:

- The starter . \start.bat (mandatory);
- The SIMULATION FOLDER\EXPERIMENT path (mandatory);
- The SWITCH (ES) (optional).

The EXPERIMENT folder contains the input files (neuroanatomy of the network), and is where output

files will be collected. It has to be structured as follows:

1. subfolder CONNECTIVITY, containing all the parameters to describe the network edges (Fig.2, in
blue), containing the following files:

Ne xn ratio.txt (mandatory)
conn_type. txt (mandatory)
mu_lambda.txt (mandatory)
mu_omega. txt (mandatory)
alpha_lambda.txt (optional)
sigma omega.txt (optional)

AWA

E s

Fig.2: Scheme for the configuration of network edges (in blue). For simplicity in the figure the term E , indicates both the
edge from a to b and that from b to a. Nevertheless, in FNS edges are, in general, non-symmetrical.

2. file config.xml, containing all the parameters of the network nodes (Fig.3, in blue), and some
global parameters. The file config.xml can be generated by the user, or obtained through the

dedicated config wizard.

https://www.fnsneuralsimulator.org/config_wizard/

Fig.3: Scheme for the configuration of network nodes (in blue).

Finally, the SWITCH (ES), which can be one or more among the following:

e -f enables faster algorithms at different levels, in return for some approximations (i.e., plasticity
exponentials, subthreshold decay exponential, etc.);

e -n followed by the list of node of interests (NOI) for which to store the output data (i.e., the firing
events for which the declared nodes are sender, and the burning events for which the declared
nodes are receiver). If this switch is not present, the entire set of nodes will be considered for the
generation of output data. The reader can find in Par. 3.2. the method implemented in FNS to
specify a list of NOls;

e -m provides as output a set of Matlab-compliant CSV output files, in addition to the output CSVs
described in Par.2. The user can use the Matlab scripts present in the GitHub repository to obtain
the electrophysiological-like signal from the CSV files.

e -r enables reduced CSV files, i.e., outputs that indicate only spiking events and inner states of
the neurons. In this case, the output of the simulation will be firing r.csv file (which will
contain the columns 1,2,3,5 of the normal £iring.csv file.and burning r.csv (which will
contain the columns 1,4,5,8 of the normal burning. csv file).

e -—gin addition to the normal output, produces a Gephi-compliant CSV output file.

EXAMPLE:

For Windows and Linux, respectively:

PS C:\FNS_folder> .\start.bat [SIMULATION FOLDER\EXPERIMENT] -m

~/FNS_folder$./start [SIMULATION FOLDER/EXPERIMENT] -m

A description of the switches can be obtained by FNS by calling the help, i.e., digiting
.\start.bat -h or ./start -h (for Windows and Linux, respectively)

Before to start the first simulation, the reader is advised to take note of the simulation issues
described in Par 3.3.

FNS neural simulator. Manual V3.1

3.1.1 Commands for the Docker version of FNS

To run FNS with Docker, you can use the public Docker Hub image.
Please navigate the terminal until the FNS folder (where you placed the [SIMULATION FOLDER])
and type the following command (consider the prefix sudo for Linux privileges):

docker run --rm -v

$ (pwd) / [SIMULATION FOLDER] :/usr/local/fns/[SIMULATION FOLDER] -it -e
JAVA OPTS="" --name fns fnsneuralsimulator/fns-simulator:latest fns
[SIMULATION FOLDER/EXPERIMENT] [SWITCHES]

Some useful notes:

- replace -it with -d if you prefer to detach and run FNS in the background;
- specify the field JAVA_OPTS in case you need to modify the Java heap size.

To make sure you are using the latest version of Docker, type:

docker pull fnsneuralsimulator/fns-simulator:latest

3.2 An in-depth look at FNS files, folders and fields.

a)
W pre exc i
I
I
Woreinh i b)
W pro axci
:
W pre inh i

Fig.4: Scheme of intra-node (a) and inter-node (b) connection between two neurons.

a. File config.xml:

Within this file we find the section <fns_config>. At this level the user can define the global
parameters, i.e., those parameters referred to all network nodes. Such section consists of the
following fields:

Field name

Argument

Meaning

<stop>

Number (decimal, positive)

Duration of the simulation
(in ms).

<avg_neuronal_signal_speed>

Number (decimal, positive)

Axonal conduction speed

(in m/s).

<serialize_after>

Number (integer, positive)

Update period of output
files (in terms of firing
events).

<lif> true, false Neuron model adopted
(LIFL or LIF)

<exp_decay> true, false Type of underthreshold
behavior adopted

(exponential or linear).

<glob_n>

Number (integer, positive)

Number of neurons.

<glob_rewiring_P>

Number (decimal): [0,1]

Small world rewiring

probability.

<glob_k> Number (even integer, Mean degree. Note that k

positive) has to be smaller than n.

<glob_R> Number (decimal): [0,1] Ratio between excitatory
neurons and total number
of neurons.

<glob_Bn> Number (integer, positive) Burst cardinality factor
(number of spikes for each
burst).

<glob_IBI> Number (decimal, positive) Inter-burst interval (in

ms).

<glob_mu_w_exc>

Number (decimal, positive)

Intra-node post-synaptic
weight (at the dendrites of
excitatory targets).

<glob_mu_w_inh>

Number (decimal, positive).

The program will
automatically take the
negative modulus of the
value introduced.

Intra-node post-synaptic
weight (at the dendrites of
inhibitory targets).

<glob_sigma_w_exc>

Number (decimal, positive)

Standard deviation of the
intra-node weights.

<glob_sigma_w_inh>

Number (decimal, positive)

Standard deviation of the
intra-node weights.

<glob_w_pre_exc>

Number (decimal, positive)

Pre-synaptic excitatory
amplitude (at the output
of excitatory senders).

<glob_w_pre_inh>

Number (decimal). The
program will automatically
take the negative modulus
of the value introduced.

Pre-synaptic inhibitory
amplitude (at the output
of inhibitory senders

<glob_external_inputs_number>

Number (integer, positive)

Number of external inputs
(Els). Each external
neuron is associated to the
related node, using a
sequential wiring order
(i.e, EL(Ny) ->ny(N,y),
EL,(N;) ->n,(N,),).

<glob_external_inputs_outdegree>

Number (integer, positive)

Number of target neurons
associated to each EI.

<glob_external_inputs_type>

Number (integer): {0;1,2}

Type of external inputs
(0=Poisson distribution;
1=constant spike train;
2=noise).

<glob_external_inputs_time_offset
>

Number (decimal, positive)

Start of the external
stimulation (in ms).

<glob_external_inputs_timestep>

Number (integer, positive)

Firing interval between
spikes generated by the
same EI (in ms). In case of
noise and Poisson-
distributed input, it has to
be intended as the mean
interval between two
spikes.

<glob_external_inputs_fireduratio
n>

Number (integer, positive)

Stop of the external
stimulation (in ms).

<glob_external_inputs_amplitude>

Number (decimal)

External input amplitude.

<glob_plasticity>

true, false

Plasticity on/off.

<glob_plasticity_eta_plus

Number (decimal: [0,1]

LTP learning rate.

<glob_plasticity_eta_minus>

Number (decimal): [0,1]

LTD learning rate.

<glob_plasticity_tau_plus>

Number (decimal, positive)

LTP decay constant.

<glob_plasticity_tau_minus

Number (decimal, positive)

LTD decay constant.

<glob_plasticity_to>

Number (decimal, positive)

STDP timeout constant.

<glob_w_max>

Number (decimal, positive)

Upper bound for the
postsynaptic weights

10

Note that the program rectifies numbers that are not inserted in the required format (removal of
fractional digits where ‘integer’ numbers are required. Where ‘even integer’ numbers are required
the program approximates to the previous admitted number.

The <fns_config> section also includes two subsections:

- the <global_neuron_manager> subsection, where the user can specify the neuron

parameters of the generic network node:

Field name Argument Meaning
<D_exc> Number (decimal): [0,1] Decay constant for
excitatory neurons (ms™). *
<D inh> Number (decimal): [0,1] Decay constant for
inhibitory neurons (ms™).
*
<c> Number (decimal, Threshold constant.
positive)
<t_arp> Number (decimal, Absolute refractory period
positive) (ms).
<a> Number (decimal) Latency curve center
distance (LIFL neuron
constant set to 1 by default,
see [1]).
 Number (decimal) Latency curve x-axis
intersection (LIFL neuron
constant set to 0 by default,
see [1]).

* Considering how they are mathematically defined, in the case of exponential decay, the greater D,

the slower the decay; in the case of linear decay, the greater D, the steeper the decay (see Fig.5, and
read [1] for the mathematical relations).

Neuron
internal state

Fig.5: Effect of the decay constant increase on the underthreshold behavior, in the cases of exponential and linear

decay. D>0.

Sih

[T s Sth f--T-ssss=ss

11

This version of FNS is based on the basic leaky integrate-and-fire with latency (LIFL)
configuration. The user can refer to the reference paper [1] for the mathematical aspects of this
neuron model.

- the <node> subsection(s), where the user can redefine parameters for some single nodes.
Such section(s) consist of the majority of the fields definable in the <fns_config> section (except
for the fields <stop>, <avg neuronal_signal_speed>, <lif> and <exp_decay>, which are the
same for all the nodes of the simulated network). Such node-specific parameters can be defined
by removing the “<glob_ ... >” prefix to the respective global parameters (e.g., <n>,
<rewiring_P>, <k>, and so on). The user can redefine the node-specific neuron parameters
through the subsection <neuron_manager>, to be included within the section <node>.
Differently to the other parameters, for these fields the field names into the .xml file remains
unchanged. Note that the neuron parameters of specific nodes are reconfigurable even partially,
i.e. only a part of the parameters of the specific node can be specified (FNS will auto-complete
the other local parameters with the values specified in the first <neuron manager> section).
The user can refer to the config.xml example file available in the GitHub repository for an
easy understanding.

Subfolder CONNECTIVITY:

File name Content

Ne xn ratio.txt The value of the matrix Ne_xn_ratio(R,C) indicates the
connections to be created from the neurons of node R
to the neurons of node €, multiplied by the number of
neurons of node R’. Types of both sender and
receiver neurons are specified through the file
conn_type.txt (described below).

mu_omega. txt Mean of the inter-node post-synaptic weights.

sigma_omega.txt (optional) Standard deviation of the inter-node post-synaptic
weights.

mu_ lambda. txt Mean parameter of the inter-node lengths (mm).

alpha lambda.txt (optional) Shape parameter of the inter-node lengths.

conn_type.txt Through this matrix the user can specify the types of
sender and receiver neurons

(excitatory/inhibitory/mixed). The generic R-C
matrix element denotes the types of both sender (row
index) and receiver (column index) neurons, by the
following values:

0= from exc&inh to exc&inh;

7 Edge cardinality is expressed as Ne/xn ratio in order to simplify the network scalability when

parametric simulation approaches are adopted. For example: a value of 0.8 applied to an edge which

transmitter node has 100 neurons of the type specified as sender in the file conn type.txt (e.g.,
excitatory), will result in 80 (excitatory) connections directed to the receiver node.

12

1= from exc&inh to exc;
2= from exc&inh to inh;
3= from exc to exc&inh;
4= from exc to exc;
5= from exc to inh;
6= from inh to exc&inh;
7= from inh to exc;
8= from inh to inh.

All these six files consist in adjacency matrices, which values specify parameters of the edge
directed from raw index to column index.

Note that the files sigma omega.txt and alpha lambda.txt are optional; if not present,
FNS will consider homogeneous inter-node lengths and weights, with the values present in
mu_omega.txt and mu_lambda. txt, respectively.

FNS supports asymmetrical matrices, in order to be able to model different edge values for the
two directions. Values pertaining to the main diagonals of all the matrices are not taken in
account.

Note that the present version of the software does not support instantaneous (zero-length)
inter-node connections.

c. Nodes list:
In the case that the user prefers to record in the output CSV files the data of a subset of NOls,
the list of nodes has to be specified in the experiment command, after the switch -n in squared
brackets, as in the following example :

[SIMULATION FOLDER\EXPERIMENT] -n [3, 25, 13, 12]

In this case, the output files will be:
-node_ x-y-z-.. burning.csv, which contains the data of burning events in which
neurons pertaining to selected NOls (x,y,z, ...) participate as receivers.
-node_x-y-z-.._firing.csv, which contains the data of firing events in which neurons
pertaining to selected NOls (x,y,z, ...) participate as transmitters.

Alternatively, if we are interested in the events pertaining to all nodes, is not necessary to specify

the list of nodes: FNS will record the activity of all network nodes for default.

d. Output files:
After each experiment the output files will be stored into the folder [EXPERIMENT/output].
This folder will be automatically generated at the first simulation.

3.3 Simulation issues

13

a. FNS allows to perform batteries of sequential simulations without the assiduous intervention of
the user, through the generation of a file named "battery.bat", structured as in the following
example:

call .\start.bat [SIMULATION_FOLDER/EXPERIMENT_l] [SWITCHES]
call .\start.bat [SIMULATION_FOLDER/EXPERIMENT_2] [SWITCHES]
call

The battery can be launched by typing . \battery.bat as experiment command. For Windows
and Linux the user can use, respectively:

PS C:\FNS_folder> .\battery.bat

~/FNS_folder$./battery

b. Before launching a simulation, please check that the files in the subfolder CONNECTIVITY are
correctly formatted, e.g.:
- decimals have to be expressed with point and not with comma,

- do not use tabs but spaces.

c. If an out-of-memory error occurs during a simulation (JAVA garbage collection), please consider
to increase the maximum heap size, using the environment variable _JAVA OPTIONS (-Xms is
used for the minimum heap size, -Xmx for the maximum heap size):

- Check the heapsize interval by typing (for Windows and Linux respectively):

java -XX:+PrintFlagsFinal -version | findstr /R /C:"HeapSize"

java -XX:+PrintFlagsFinal -version | grep HeapSize

- Increase the heapsize: insert as environment variable (user variable) “ JAVA OPTIONS”

and set, for example, -Xms1G and -Xmx8G as fields.

d. If a problem is encountered during an experiment, use Ctrl+c to block its execution in the

powershell.

e. Regarding the external stimulation, when the field <external_inputs_outdegree> is set to 1, each
external generator sends an independent process to its target network neuron, using one-to-one
connections with the target neurons taken sequentially with respect to their neuron order; if
<external_inputs_outdegree> is greater than 1, the target neurons are chosen randomly from

those of the belonging node.

14

4. Simulation examples

Some network examples are present in the GitHub repository. Some configuration presets are now in
the folder FNS-simulation_examples of the ENS GitHub repository, including:

e single node

e resonance pair, please refer to [2], [3];

e dynamical relaying, please refer to [4];

15

https://github.com/fnsneuralsimulator/

References

[1] Susi G, Garces P, Paracone E, Cristini A, Salerno M, Maestu F, Pereda E. FNS: an event-driven
spiking neural network simulator based on the LIFL neuron model (submitted). PDF available at
arXiv [1801.00864] arXiv link

[2] Maslennikov O.V and Nekorkin V.1, 2014. Modular networks with delayed coupling:
Synchronization and frequency control. Phys. Rev. E 90.

[3] Gollo L, Mirasso C, Sporns O, Breakspear M, 2014. Mechanisms of zero-lag synchronization in
cortical motifs. PLOS computational biology 10 (4).

[4] Vicente R, Gollo LL, Mirasso CR, Fischer I, Pipa G, 2008. Dynamical relaying can yield zero time

lag neuronal synchrony despite long conduction delays. Proceedings of the National Academy of
Sciences USA 105 (44).

16

https://arxiv.org/pdf/1801.00864.pdf

	1. Software installation
	1.1 Regular installation
	1.2 Run using Docker

	2. Simulation process
	2.1 Simulation procedure
	2.2 Visualization of neural activity
	2.2.1 MATLAB
	2.2.2 Python ​
	2.2.3 Animation with Gephi

	3. How to design a simulation
	3.1 Experiment command
	3.1.1 Commands for the Docker version of FNS

	3.2 An in-depth look at FNS files, folders and fields.
	3.3 Simulation issues

	4. Simulation examples
	
	References

