Many-shot Jailbreaking

Link to the paper

Notes

- 1. Effectiveness of MSJ (Eval Metric: Negative Log Likelihood):
 - 1. Across Tasks (Malicious use cases, Malevolent personality evals, Opportunities to insult)
 - effective across all tasks
 - MSJ efficacy increases with increase in number of shots
 - 2. Across Models
 - 3. Across Formatting of MSJ
 - 1. Swapping "user" and "assistant" tags
 - 2. Translating into different languauge
 - 3. Replacing "user" and "assistant" tags with "Question" and "Answer" tags
 - these alter intercepts of the NLL graph, but not the slope
- changes to increase the effectiveness of MSJ, because the changed prompts are out-of-distribution with respect to alignment fine-tuning dataset
 - 4. When MSJ examples mismatch from target topic:
 - 1. Ineffective when demonstration comes from a narrow distribution
- 2. incontext attacks can still be effective under a demonstration-query mismatch if the demonstration is diverse enough
 - 5. Composition with other jailbreaks:
 - 1. blackbox, "competing objectives" attack
 - increases the probability of a harmful response at all context lengths
 - 2. white-box attack adversarial suffix attack
 - mixed effects depending on the number of shots
- Speculation: GCG attack is heavily location-specific within the attack string and that it doesn't retain its effectiveness when its position is modified with the addition of each few-shot demonstration.
- **Potential Research Area: it may be possible to optimize a GCG suffix to compose well with MSJ.**
- 2. Sclaing Laws for MSJ (log-probabilities v/s number of in-context examples)
 - 1. Power laws are ubiquitous
- in-context learning on jailbreaking-unrelated tasks also displays power law like behavior (agrees with [paper](https://aclanthology.org/2024.naacl-long.260.pdf))
- Two mechanisms in attention heads give rise to power laws resembling the ones observed emperically
- 2. Larger models tend to require fewer in-context examples to reach a given attack success probability
 - Larger models learn faster in context, and so have larger power law exponents.
- 3. Mitigations against MSJ
 - 1. Alignment Finetuning

- primary effects of SL and RL are on increasing the intercept of the power law, but not on reducing the exponent. Hence, they decrease jailbreaks in a zero-shot setup, but do not change the impact on Multi Shot Jailbreaks.
 - 1. Targeted Supervised Finetuning
 - 2. Targeted Reinforcement Learning
 - 2. Prompt-based

```
Risk from Long Context Models
Dataset and Prompts
Effectiveness Evaluation
Power Law Experiments 
Mitigation using Supervised Finetuning
Targeted Training Results
Alternative Scaling Laws
Prompt Based Defence
```

Blackbox, "competing objectives" attack

Adversarial suffix (white box) attack

- Accelerating Greedy Coordinate Gradient and General Prompt Optimization via Probe Sampling: [paper](https://arxiv.org/pdf/2403.01251)

Potential Research Areas

- 1. Induction heads posit two distinct mechanisms that indeed give rise to power laws resembling those observed empirically.
- [A mathematical framework for transformer circuits](https://transformer-circuits.pub/2021/framework/index.html)
- 2. How to optimize GCG suffix to work well with MSJ

Function Vectors -> Notes Link