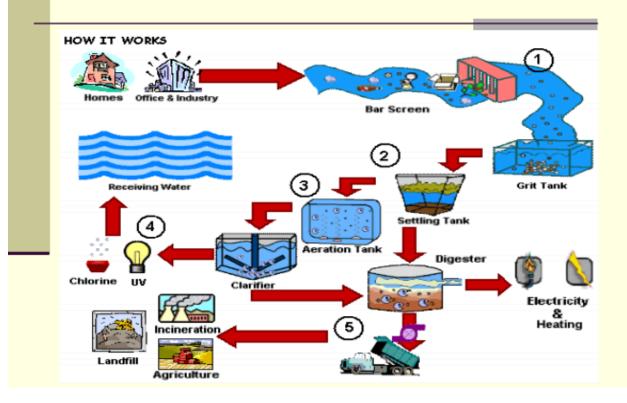
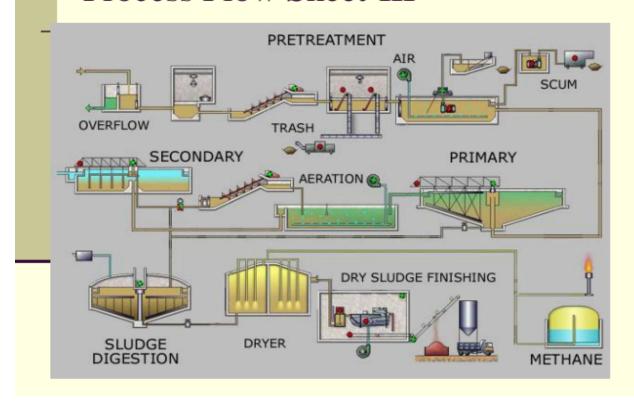


UNIT II: PRIMARY TREATMENT

WASTE WATER TREATMENT
PRIMARY SLUDGE TREATMENT
BASIC DESIGN CONSIDERATION
PRINCIPLES OF REACTOR DESIGN AND PROCESS FLOW SHEETS.


• GRIT REMOVAL, SEDIMENTATION.

Process Flow Sheet-I


Process Flow Sheet-I

Process Flow Sheet-II

Process Flow Sheet-II

Process Flow Sheet-III

Process Flow Sheet-III

Unit operation Efficiencies

Type of treatment	Purification effected	process or unit employed	%BOD removal	%Solids removal	%bacterial removal
Preliminary	removal of floating materials	Coarse/fine screens	5-10%	2-20%	10-20%
	removal of heavy settleable inorganics	Grit chamber or detritus tank	10-20%	20-40%	10-20%
Treatment	removal of fats & grease	Skimming tank	20-30%	20-40%	10-20%
Primary	removal of suspended	sedimentation tank	30-35%	60-65%	25-75%
		septic tank	20-30%	40-60%	25-75%
Treatment	settleable organic solids	Imhoff tank	30-40%	60-65%	25-75%
		chemical flocculation and sedimentation (seldom used)	50-85%	70-90%	40-80%
Secondary	removal of fine suspended non-settleable solids and colloids including dissolved	Intermittent sand filter with sedimentation (seldom used)	90-95%	85-95%	95-98%
		Low rate trickling filter w/sedimentation	90-95%	70-92%	90-95%
		high rate trickling filter w/sedimentation	65-95%	65-92%	80-95%
		activated sludge treatment w/sedimentation	75-95%	85-90%	90-98%
treatment	organic matter	oxidation pond	85-90%	85-90%	90-98%
Tertiary treatment	removal of pathogens and very fine dissolved organics	chlorination	100.00%	100.00%	100.00%

Unit operation Efficiencies

Type of treatment Purification effected process or unit %BOD

%Solids employed

removal

removal

%bacterial removal

Preliminary Treatment

removal of floating materials Coarse/fine screens 5-10% 2-20% 10-20% removal of heavy settleable inorganics

Grit chamber or detritus

tank 10-20% 20-40% 10-20%

removal of fats & grease Skimming tank 20-30% 20-40% 10-20%

Primary Treatment

sedimentation tank 30-35% 60-65% 25-75%

septic tank 20-30% 40-60% 25-75%

Imhoff tank 30-40% 60-65% 25-75%

Secondary treatment

removal of suspended settleable organic solids chemical flocculation and sedimentation (seldom

used) 50-85% 70-90% 40-80%

Intermittent sand filter with sedimentation (seldom

used) 90-95% 85-95% 95-98%

Low rate trickling filter

w/sedimentation 90-95% 70-92% 90-95%

high rate trickling filter

w/sedimentation 65-95% 65-92% 80-95%

activated sludge treatment

w/sedimentation 75-95% 85-90% 90-98%

oxidation pond 85-90% 85-90% 90-98%

Tertiary treatment

removal of fine suspended non-settleable solids and colloids including dissolved organic matter removal of pathogens and very

fine dissolved organics chlorination 100.00% 100.00% 100.00%

WWTP: Basic Design Considerations

- Influent characteristics and strength
- Effluent Quality
- Design Loading
- 4. Design parameters

WWTP: Basic Design Considerations

 Influent characteristics and strength 2. Effluent Quality 3. Design Loading 4. Design parameters

Design Considerations

Influent Strength and characteristics (Taught in Unit-I)

Design Considerations

Influent Strength and characteristics (Taught in Unit-I)

Design Considerations: Effluent Quality

- Based upon ultimate disposal/reuse
- Basis for selection of treatment process, unit operations and their design
 - Efficiency of treatment
 - Disinfection vs no-disinfection

Design Considerations: Effluent Quality

- Based upon ultimate disposal/reuse
- Basis for selection of treatment process, unit

operations and their design

Efficiency of treatment

Disinfection vs no-disinfection

Design Considerations: Design Loading

- 1. Hydraulic Loading
 - In terms of volumes
- Mass Loading
 - In terms of mass of BOD or SS
- Average, Maximum, Minimum loading???
- Daily, Monthly, yearly??
- 5. Dry weather runoff (no stormwater runoff) or wet weather runoff (stormwater in rainy season)??

Design Considerations: Design Loading

1. Hydraulic Loading

1.

In terms of volumes 2. Mass

Loading

1.

In terms of mass of BOD or SS

- 3. Average, Maximum, Minimum loading??? 4. Daily, Monthly, yearly??
- 5. Dry weather runoff (no stormwater runoff) or

wet weather runoff (stormwater in rainy season)??

Design loading (contd..)

- Hydraulic loading: pump, pipes and hydraulically limited equipment design
- Mass loading: aeration, sludge digestion equipment
- Peak flow factor= Max flow/avg flow = 1.5 3.0
- Minimum flow factor= Min flow/avg flow = 0.1 0.3
- Check for max., min and average conditions. Units may be shut off during minimum flow. Scouring to be avoided during min. flow.
- Max design: capacity underutilization, Min design: process overloading
- Design multiple units

Design loading

(contd..)

I Hydraulic loading: pump, pipes and hydraulically limited

equipment design I Mass loading: aeration, sludge digestion equipment

- Peak flow factor= Max flow/avg flow = 1.5 3.0 Minimum flow factor= Min flow/avg flow = 0.1 0.3
- Check for max., min and average conditions. Units may be shut off during minimum flow. Scouring to be avoided during min. flow. Max design: capacity underutilization, Min design: process overloading
- I Design multiple units