
Raspando dados com o GitHub
Actions e analisando com Datasette
(Scraping data with GitHub Actions and analyzing with Datasette)

Simon Willison (@simonw) - simonwillison.net

Coda.Br 2021, 12th November 2021

This workshop will be presented in English with live translation.

This document: https://bit.ly/dados-datasette

Git scraping

Exercise 1: Build a scraper using GitHub Actions

Exercise 2: Try out Datasette against some scraped data

Exercise 3: Use sqlite-utils and Datasette to build your own database

Exercise 4: potholes data, with git-history, on GitPod

The Houston incidents demo

More information

Git scraping
Git scraping is the technique of writing scrapers that write scraped data to a Git repository,
such that they can track changes made to that data over time.

●​ Git scraping: track changes over time by scraping to a Git repository
●​ Git scraping, the five minute lightning talk

My favourite git scraper that I’ve built is for the trees in San Francisco:

https://github.com/simonw/sf-tree-history

Every day it checks to see if anyone has updated the city’s official CSV file of trees - over
195,000 trees! Most weekdays it turns out someone HAS updated it:

https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq

Since the commit history page is broken right now, here are some recent tracked changes:

●​ 96528d0 Thu Nov 11 11:32:01 2021 +0000 18 trees changed, 80 trees added

https://twitter.com/simonw
https://simonwillison.net/
https://escoladedados.org/coda2021/
https://bit.ly/dados-datasette
https://simonwillison.net/2020/Oct/9/git-scraping/
https://simonwillison.net/2021/Mar/5/git-scraping/
https://github.com/simonw/sf-tree-history
https://data.sfgov.org/City-Infrastructure/Street-Tree-List/tkzw-k3nq
https://github.com/simonw/sf-tree-history/commits/main
https://github.com/simonw/sf-tree-history/commit/96528d02256582500ee7449176f5e392e9fb4ef5

●​ 6680fe7 Sun Nov 7 11:29:47 2021 +0000 12 trees changed, 11 trees added
●​ 5cc6330 Thu Nov 4 11:30:20 2021 +0000 13 trees changed, 2 trees added
●​ 92814f5 Sun Oct 31 11:29:53 2021 +0000 2 trees changed, 6 trees added

There are plenty more examples of Git scrapers on GitHub - over 200 now:
https://github.com/topics/git-scraping - this page is even more fun if you sort by most recent
updates, since you can see the Git scrapers that most recently captured data (often within
the last few minutes): https://github.com/topics/git-scraping?o=desc&s=updated

The LA Times Data Desk team operates an incredible selection of scrapers for California
coronavirus data. It’s worth spending some time exploring their repository to see what a
really sophisticated implementation of this pattern looks like, and learn from their code:

https://github.com/datadesk/california-coronavirus-scrapers

Exercise 1: Build a scraper using GitHub Actions
We're going to build a Git scraper, using just a GitHub account and our web browser.

We're going to scrape the data behind the USGS earthquake map at
https://earthquake.usgs.gov/earthquakes/map/

I chose this because the data changes frequently, so we should see some changes even
during the workshop.

We can use the browser DevTools to track down the data behind the map:

https://github.com/simonw/sf-tree-history/commit/6680fe775e620e457ddb26f3b42694b3641066f0
https://github.com/simonw/sf-tree-history/commit/5cc6330c44c6cec79cf005bac0af2226eebc07f5
https://github.com/simonw/sf-tree-history/commit/92814f5c69bd1d5ddfe7d72361e4f1212ebefdab
https://github.com/topics/git-scraping
https://github.com/topics/git-scraping?o=desc&s=updated
https://github.com/datadesk/california-coronavirus-scrapers
https://earthquake.usgs.gov/earthquakes/map/
https://earthquake.usgs.gov/earthquakes/map/

In this case it's a file at
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.geojson

It's also documented here: https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php

We're going to start scraping it every ten minutes, using GitHub Actions.

1.​ Make sure you have an account on https://github.com/ - if you don't have one yet
sign up now​

2.​ Create a new repository - https://github.com/new - I suggest calling it usgs-scraper
but you can call it anything you like (here’s mine: github.com/simonw/usgs-scraper)​

3.​ Click "Add README" to finish creating the repository​

4.​ Now we're going to add the scraper. Click "Add file -> Create new file" - then in
"Name your file..." carefully type the following: .github/workflows/scrape.yml

Copy and paste the text from here into the new file:
https://gist.github.com/simonw/f010059f240fddab1ffd2a60ec9eb49d (click “Raw” to make
sure you copy the right text) - or you can try copying it from here:

name: Scrape latest data

on:
 push:

https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day.geojson
https://earthquake.usgs.gov/earthquakes/feed/v1.0/geojson.php
https://github.com/
https://github.com/new
https://github.com/simonw/usgs-scraper
https://gist.github.com/simonw/f010059f240fddab1ffd2a60ec9eb49d

 workflow_dispatch:
 schedule:
 - cron: '*/10 * * * *'

jobs:
 scrape:
 runs-on: ubuntu-latest
 steps:
 - name: Check out this repo
 uses: actions/checkout@v2
 with:
 fetch-depth: 0
 - name: Fetch latest data
 run: |-
 curl
"https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/2.5_day
.geojson" | jq > usgs.json
 - name: Commit and push if it changed
 run: |-
 git config user.name "Automated"
 git config user.email "actions@users.noreply.github.com"
 git add -A
 timestamp=$(date -u)
 git commit -m "Latest data: ${timestamp}" || exit 0
 git push

This defines what GitHub calls a "workflow". It will run every ten minutes - but it will also run
any time you "push" code (edit files in your repository) or when you click a manual button -
that's what "workflow_dispatch" means.​
​
It will download that earthquake file using the curl tool, then pipe it through jq in order to
pretty-print the JSON - this makes for a more useful display of file differences.​

Then it writes the result to a file called usgs.json and commits any updates back to the
repository.

Save the file... and you're done! You've written your first scraper. If you click on the "Actions"
tab you'll be able to see it running.

Since the original format of this file is GeoJSON GitHub even knows how to render it on a
map for you - here’s mine:

https://github.com/simonw/usgs-scraper/blob/main/usgs.json

https://github.com/simonw/usgs-scraper/blob/main/usgs.json

This is the simplest possible form of Git scraper - the same trick can work for HTML pages or
CSV files too if you leave out the “| jq” bit (which only works with JSON files).

If you start this running now it will hopefully capture some fresh earthquakes before the end
of the workshop!

Exercise 2: Try out Datasette against some
scraped data
Now that we know how to scrape data, what can we do with the data that we collect?

I've spent the last four years building a tool called Datasette (it's birthday is tomorrow!). It's a
tool for exploring, visualizing and publishing data. It's a great fit for exploring data collected
through Git scraping.

A demo: global-power-plants.datasettes.com/global-power-plants/global-power-plants

This is a Datasette instance containing 33,000 power plants from around the world, imported
from a CSV file published by the World Resources Institute.

The links at the top of the page are called "facets" - they are a tool for slicing and filtering the
data.

I can use them to see all of the power plants in Brazil:
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country
_long=Brazil

https://datasette.io/
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil

Here's a map of all of the Solar plants in Brazil:
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country
_long=Brazil&primary_fuel=Solar

The map is generated by a Datesette plugin called datasette-cluster-map - Datasette has a
wide variety of plugins that add additional features like this.

I can export that data out as CSV or JSON.

If I click "View and edit SQL" I can compose my own SQL queries against the data too.

Example SQL query:
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name
%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D
%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0
Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_lon

https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil&primary_fuel=Solar
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil&primary_fuel=Solar
https://global-power-plants.datasettes.com/global-power-plants/global-power-plants?country_long=Brazil&primary_fuel=Solar
https://datasette.io/plugins/datasette-cluster-map
https://datasette.io/plugins
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar

g%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+b
y%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar

I did another demo of my personal private Datasette, called Dogsheep. You can see more
about that in Personal Data Warehouses: Reclaiming Your Data.

https://dogsheep.github.io/ - more about the Dogsheep personal analytics project.

Now let's look at a different example, created using Git scraping.

https://cdc-vaccination-history.datasette.io/ is a Datasette instance I created using data
collected by my https://github.com/simonw/cdc-vaccination-history repository - which I built
for this video: https://simonwillison.net/2021/Mar/5/git-scraping/

Because I've been scraping the page every day for 8 months now, I have a LOT of historical
data.

I wrote some custom Python code to turn that into the database you see at
https://cdc-vaccination-history.datasette.io/

Script is https://github.com/simonw/cdc-vaccination-history/blob/main/build_database.py

Start at https://cdc-vaccination-history.datasette.io/cdc/daily_reports_counties - request
StateName = California, then click the cog icon by the "County" menu and select "Facet by
this".

Select "Alameda County" to see just the data collected for that county in California.

https://cdc-vaccination-history.datasette.io/cdc/daily_reports_counties?_facet=StateName&S
tateName=California&_facet=County&_facet_size=max&County=San+Mateo+County

Now click "Show charting options", select "line", set X column to "Date" of type "Date/time"
and Y column to "Series_Complete_Pop_Pct" of type "Numeric". You'll see a line chart!

https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar
https://global-power-plants.datasettes.com/global-power-plants?sql=select%0D%0A++name%2C%0D%0A++gppd_idnr%2C%0D%0A++capacity_mw%2C%0D%0A++latitude%2C%0D%0A++longitude%2C%0D%0A++primary_fuel%2C%0D%0A++commissioning_year%0D%0Afrom%0D%0A++%5Bglobal-power-plants%5D%0D%0Awhere%0D%0A++%22country_long%22+%3D+%3Ap0%0D%0A++and+%22primary_fuel%22+%3D+%3Ap1%0D%0Aorder+by%0D%0A++rowid%0D%0Alimit%0D%0A++101&p0=Brazil&p1=Solar
https://simonwillison.net/2020/Nov/14/personal-data-warehouses/
https://dogsheep.github.io/
https://cdc-vaccination-history.datasette.io/
https://github.com/simonw/cdc-vaccination-history
https://simonwillison.net/2021/Mar/5/git-scraping/
https://cdc-vaccination-history.datasette.io/
https://cdc-vaccination-history.datasette.io/
https://github.com/simonw/cdc-vaccination-history/blob/main/build_database.py
https://cdc-vaccination-history.datasette.io/cdc/daily_reports_counties
https://cdc-vaccination-history.datasette.io/cdc/daily_reports_counties?_facet=StateName&StateName=California&_facet=County&_facet_size=max&County=San+Mateo+County
https://cdc-vaccination-history.datasette.io/cdc/daily_reports_counties?_facet=StateName&StateName=California&_facet=County&_facet_size=max&County=San+Mateo+County

The charting feature is provided by the datasette-vega plugin.

Exercise 3: Use sqlite-utils and Datasette to build
your own database
Database is built on top of SQLite: www.sqlite.org

SQLite is different from server-based database engines such as MySQL or PostgreSQL. In
SQLite there is no server, and every database is a file on disk. This makes creating new
SQLite databases really quick and easy - I often create dozens a day, and I have many
hundreds scattered around my laptop now.

Next we're going to build our own Datasette instance.

For this, we're going to need a Python development environment.

If you have one of these on your own laptop and know how to use it (installing tools with pip
install etc) you can do that.

https://datasette.io/plugins/datasette-vega
https://www.sqlite.org/

If you don't have an environment on your laptop - or if you want to try something new - I
recommend following along with me as I use GitPod as a cloud-based development
environment for this next step.

GitPod gives you a working Linux development environment with Python pre-installed and
ready to go - for free, in your browser. It even includes a high quality in-browser text editor
based on VS Code!

GitPod needs you to link it to a GitHub repository. We'll reuse the usgs-scraper repository
you created earlier.

1.​ Visit https://gitpod.io and sign in with your GitHub account
2.​ Click "New Project" or visit https://gitpod.io/new and select that GitHub repository

from earlier (any repository will do here actually)
3.​ Create and enter a Workspace for that repository.

Your Workspace gives you a full text editor running in your browser. It also runs a dedicated
Linux environment for you, which you can run commands in.

Open the Terminal tab at the bottom of the page - this is where we will run commands to
install and start running Datasette.

Run these commands:

pip install datasette

This installs Datasette. But we also need to install some plugins.

datasette install datasette-x-forwarded-host

This installs a plugin which is needed to ensure GitPod serves the correct links inside of
Datasette.

https://gitpod.io
https://gitpod.io/new
https://datasette.io/plugins/datasette-x-forwarded-host

datasette install datasette-cluster-map datasette-vega

This installs two more plugins - one for the map visualization, and one for the tool that lets
you create charts.

Let's grab a copy of the power plants database to try out in our own Datasette:

wget global-power-plants.datasettes.com/global-power-plants.db

Now we can start Datasette running like this:

datasette global-power-plants.db

Then click on the "Open Browser" button:

Next we're going to create our own SQLite database file. We'll use the database of trees in
San Francisco that I've been creating with a Git scraper for several years now.

We can get that from https://github.com/simonw/sf-tree-history

The full link we want to the raw CSV file is:

https://github.com/simonw/sf-tree-history/blob/main/Str;eet_Tree_List.csv?raw=true

So in GitPod hit Ctrl+C to stop Datasette, then run the following:

wget "https://github.com/simonw/sf-tree-history/blob/main/Street_Tree_List.csv?raw=true"

https://github.com/simonw/sf-tree-history

mv Street_Tree_List.csv\?raw\=true Street_Tree_List.csv

That second command renames the file to something nicer - if you type mv Stree and then
hit Tab it will complete the ugly file name for you, saving you from having to type it.

Now that we have a CSV file, we can convert it into a SQLite database. Since it's quite a
large file, we're going to use a trick which loads data VERY fast into SQLite:

sqlite3 trees.db <<EOS
.mode csv
.import Street_Tree_List.csv trees
EOS

Now we can run datasette trees.db to see an interactive map of 195,000 trees in San
Francisco!

Other things like GitPod are GitHub Codespaces (only available to beta testers) and Replit
https://replit.com/

Q&A

Does Datasette allow joins?

Yes it does! You can write custom SQL queries to join together data from two
different tables.

Here’s an example query against my https://covid-19.datasettes.com/ Datasette
which joins the New York Times county covid data against county population
numbers from the US Census, using the FIPS code for the counties:

select
 ny_times_us_counties.date,
 ny_times_us_counties.county,
 ny_times_us_counties.state,
 ny_times_us_counties.fips,
 ny_times_us_counties.cases,
 ny_times_us_counties.deaths,
 us_census_county_populations_2019.population,
 1000000 * ny_times_us_counties.deaths /
us_census_county_populations_2019.population as deaths_per_million,
 1000000 * ny_times_us_counties.cases /
us_census_county_populations_2019.population as cases_per_million
from
 ny_times_us_counties
 join us_census_county_populations_2019
 on ny_times_us_counties.fips = us_census_county_populations_2019.fips
where
 "date" = (
 select
 max(date)
 from
 ny_times_us_counties
)
order by

https://til.simonwillison.net/sqlite/import-csv
https://replit.com/
https://covid-19.datasettes.com/

 deaths_per_million desc;

You can try that query here.

How about if you have a CSV file that uses semicolons instead of commas?

I don’t (yet) know how to use the SQLite .import command for those, but my
sqlite-utils tool has a --sniff option that tries to detect the delimiter:

sqlite-utils insert man.db mananciais mananciais.csv --csv --sniff

How do the nice commit messages in sf-tree-history work?

These use a tool I wrote called csv-diff to generate human-readable commit
messages. You can see the workflow that runs that at
https://github.com/simonw/sf-tree-history/blob/main/.github/workflows/update.yml

Exercise 4: potholes data, with git-history, on
GitPod
We've seen how to create a database from the most recent version of a file with the San
Francisco trees data.

But the point of Git scraping is to capture historical information. How can we turn that into
something we can use?

Browsing the history on GitHub is not an efficient way to understand the data!

I've mainly been solving this on my own projects by writing custom Python code, but
yesterday I released a new tool which can help solve this problem more generally for other
projects.

It's called git-history: https://datasette.io/tools/git-history

We're going to try it out on some data collected using Git scraping.

When browsing through the repositories tagged with git-scraping on GitHub last night, I
came across this one: https://github.com/patricktrainer/open-potholes

Patrick Trainer has been collecting data about potholes in the road in New Orleans, by
scraping data from the New Orleans 311 service records on
https://data.nola.gov/City-Administration/311-OPCD-Calls-2012-Present-/2jgv-pqrq/data

In GitPod, we'll start by installing the git-history tool:

pip install git-history

Next we'll clone a copy of his repository, with all of the historical pothole data:

https://covid-19.datasettes.com/covid?sql=++++select%0D%0A++++++ny_times_us_counties.date%2C%0D%0A++++++ny_times_us_counties.county%2C%0D%0A++++++ny_times_us_counties.state%2C%0D%0A++++++ny_times_us_counties.fips%2C%0D%0A++++++ny_times_us_counties.cases%2C%0D%0A++++++ny_times_us_counties.deaths%2C%0D%0A++++++us_census_county_populations_2019.population%2C%0D%0A++++++1000000+*+ny_times_us_counties.deaths+%2F+us_census_county_populations_2019.population+as+deaths_per_million%2C%0D%0A++++++1000000+*+ny_times_us_counties.cases+%2F+us_census_county_populations_2019.population+as+cases_per_million%0D%0A++++from%0D%0A++++++ny_times_us_counties%0D%0A++++++join+us_census_county_populations_2019+on+ny_times_us_counties.fips+%3D+us_census_county_populations_2019.fips%0D%0A++++where%0D%0A++++++%22date%22+%3D+%28%0D%0A++++++++select%0D%0A++++++++++max%28date%29%0D%0A++++++++from%0D%0A++++++++++ny_times_us_counties%0D%0A++++++%29%0D%0A++++order+by%0D%0A++++++deaths_per_million+desc%3B
https://sqlite-utils.datasette.io/
https://github.com/simonw/sf-tree-history
https://github.com/simonw/csv-diff
https://github.com/simonw/sf-tree-history/blob/main/.github/workflows/update.yml
https://datasette.io/tools/git-history
https://github.com/patricktrainer/open-potholes
https://data.nola.gov/City-Administration/311-OPCD-Calls-2012-Present-/2jgv-pqrq/data
https://data.nola.gov/City-Administration/311-OPCD-Calls-2012-Present-/2jgv-pqrq/data

git clone https://github.com/patricktrainer/open-potholes​
cd open-potholes

In order to tell when an item is new as opposed to updated, we need to find a unique ID
column we can use. Opening up potholes.json in the text editor shows us that
service_request looks like a good option for this.

Now we can run this command to build ourselves a database that shows us all of those
changes:

git-history file potholes.db potholes.json --id service_request

The file command creates a database that reflects the changes made to a single file in the
repository. In this case that's the potholes.json file, and we want to create the database as
potholes.db.

We can run datasette potholes.db to start exploring our database.

The items table contains just the most recent version of each pothole.

The item_versions table contains multiple rows for potholes that were updated multiple
times.

Facet by item to see the potholes that had the most entries - then click on one and you'll see
a chronological timeline of changes made to that record.

The Houston incidents demo
As a final demo, I did some work with this repository containing two years of data from the
City of Houston active incidents page:
https://cohweb.houstontx.gov/ActiveIncidents/Combined.aspx

The repository is at https://github.com/adolph/getIncidentsGit

It’s huge. I ran this command over-night because it took hours to finish:

git-history file incidents.db /tmp/getIncidentsGit/incidents.json
--repo /tmp/getIncidentsGit \
​ --id CallTimeOpened --id Address --id CrossStreet \
​ --convert 'json.loads(content)["ActiveIncidentDataTable"]' \
​ --ignore-duplicate-ids

Since this file doesn’t have a unique ID column I decided to use the combination of the call
time opened, the address and the cross street. This almost worked...

The --convert option is necessary because the stored data isn’t quite in the right shape - it
needs to be turned into a JSON array of objects.

https://cohweb.houstontx.gov/ActiveIncidents/Combined.aspx
https://github.com/adolph/getIncidentsGit

--ignore-duplicate-ids is needed because there are a few pages in the data where the
same call time / address / cross street is used for more than one record! It causes the script
to take one of them at random rather than quitting with an error.

When I opened the database I found that I couldn’t facet because it was too large and the
faceting hit the time limit. So I restarted Datasette like this:

datasette incidents.db \
 --setting facet_time_limit_ms 10000 \
 --setting sql_time_limit_ms 10000

This bumped two of the time limits up to ten seconds, see Datasette settings.

Then I used sqlite-utils to make some modifications to the data. Full documentation on the
features I used is here:

●​ sqlite-utils convert for converting values in columns using a Python snippet
●​ sqlite-utils extract for extracting columns into a separate table
●​ sqlite-utils transform for transforming a table to rename some columns

The full sequence of commands I ran was:

sqlite-utils convert incidents.db items XCoord YCoord \
 'float(value) / 1000000.0 if value else None'

sqlite-utils transform incidents.db items \
 --rename XCoord longitude \
 --rename YCoord latitude

sqlite-utils convert incidents.db items CallTimeOpened \
 'r.parsedatetime(value)'

sqlite-utils convert incidents.db items Units \
 'r.jsonsplit(value, delimiter=";")'

sqlite-utils extract incidents.db items IncidentType

More information

https://simonwillison.net/ will have more about git-history soon

https://datasette.io/ is the official website for datasette

GitHub Flat Data: https://next.github.com/projects/flat-data describes a GitHub research
project along similar lines to Git scraping, which I found very reassuring as it means GitHub
aren’t going to decide that this is all a bad usage of GitHub and ban it!

https://docs.datasette.io/en/stable/settings.html
https://sqlite-utils.datasette.io/en/stable/cli.html#converting-data-in-columns
https://sqlite-utils.datasette.io/en/stable/cli.html#extracting-columns-into-a-separate-table
https://sqlite-utils.datasette.io/en/stable/cli.html#transforming-tables
https://simonwillison.net/
https://datasette.io/
https://next.github.com/projects/flat-data

Follow https://twitter.com/simonw for more of this kind of stuff - or subscribe to the Datasette
monthly(ish) newsletter at https://datasette.substack.com/

https://twitter.com/simonw
https://datasette.substack.com/

	Raspando dados com o GitHub Actions e analisando com Datasette
	Git scraping
	Exercise 1: Build a scraper using GitHub Actions
	Exercise 2: Try out Datasette against some scraped data
	
	Exercise 3: Use sqlite-utils and Datasette to build your own database
	Exercise 4: potholes data, with git-history, on GitPod
	The Houston incidents demo
	More information

