
SD-WAN TLS Scanning

Sergey Gordeychik
Inception Institute of
Artificial Intelligence

Abu-Dhabi, UAE
serg.gordey@gmail.com

Denis Kolegov
Tomsk State University

Tomsk, Russia
d.n.kolegov@gmail.com

Antony Nikolaev
Tomsk State University

Tomsk, Russia
antoniy.nikolaev@gmail.com

Introduction

In this work, we present a scan for known vulnerabilities in the TLS implementations of SD-WAN
products deployed on the Internet. We used the TLS-Attacker framework as a TLS scanning
engine and the Grinder framework, developed by us, as an orchestrator.

The idea to conduct this research was born after reading the “Scalable Scanning and
Automatic Classification of TLS Padding Oracle Vulnerabilities” paper . The last one1

evaluated the Alexa Top Million Websites for CBC padding oracle attack and revealed
vulnerabilities in 1.83% of them. The vulnerability was found in the following network security
products:

● Citrix Application Delivery Controller (ADC) and NetScaler Gateway. CVE-2019-6485.
● F5 BIG-IP. CVE-2019-6593. TMM TLS virtual server vulnerability CVE-2019-6593.
● SonicWall SonicOs. CVE-2019-7477.
● Oracle HTTP Server. Oracle Critical Patch Update Advisory - July 2019

We observed that the paper did not mention vulnerabilities to CBC Padding Oracle Attack in
SD-WAN products. It can be explained by many reasons. For example, SD-WAN TLS interfaces
are may not be vulnerable to this attack or the SD-WAN nodes are not in Alexa Top Million
Websites. At the same time, the paper considers and encounters only vulnerabilities to CBC
padding attack. We thought that it was also interesting to scan SD-WAN nodes related to all
main TLS vulnerabilities.

Within our research, we considered only SD-WAN nodes (controllers, Web UI, edge routers, etc.)
we had already collected and stored via enumeration and fingerprinting .2

2 https://github.com/sdnewhop/sdwannewhope/blob/master/docs/census.md
1 https://github.com/RUB-NDS/TLS-Padding-Oracles

https://github.com/sdnewhop/sdwannewhope/blob/master/docs/census.md
https://github.com/RUB-NDS/TLS-Padding-Oracles


Approach and Methodology
The employed methodology can be defined as follows:

1. Craft signatures of the interfaces of an SD-WAN product.
2. Define and express the signatures within a search engine query language.
3. Discover and enumerate devices using the search engines (Shodan, Censys, etc.).
4. Use incremental save method to store the results in the database.
5. Run TLS scanning engines (e.g., TLS-Attacker, SSL Labs Server Scan, etc.) on the

appropriate hosts and interfaces from the database.
6. If vulnerabilities are found, rescan the node two times to minimize false positives.
7. If the vulnerabilities are still present, check them again using PoC scripts in Python.
8. Save the confirmed results to the database.
9. If a new SD-WAN product or interface is discovered go to step 1.
10. Run the steps 3 - 7 regularly.

Responsible Disclosure
We responsibly reported findings to several vulnerable vendors. At this time, the notified vendors
have been processing and fixing the vulnerabilities. If a vulnerability was found in an older
version of a product but was absent in the new version of the considered product, we did not
notify the vendor. We also reported several bugs found in TLS-Attacker.

Automation and Orchestration
Automation and orchestration are implemented by the Grinder framework . Grinder is a security3

research intelligence framework that have been developing since 2018. It was created to
automatically enumerate, fingerprint and scan hosts on the Internet using different specialised
back-end systems: search engines (e.g., Shodan or Censys) for discovering, scanners (e.g.,
NMAP) for active fingerprinting and scanning, vulnerability databases (e.g., Vulners) for getting
information related to vulnerabilities in the discovered software. The Grinder framework can be
used in many different areas of security research, as a connected Python module to your project
or as an independent ready to use from the box tool.

The main purpose of Grinder is to unify different sophisticated security tools, aggregate
gathered information and help understanding collected information and exposed statistics
related to the hosts in the research scope. Grinder incrementally saves all scans, results and
statistics to its database to compare results over time and track the statistics changes.

3 https://github.com/sdnewhop/grinder

https://github.com/sdnewhop/grinder


To visualize gathered data, Grinder provides an interactive world map with all results. Grinder
map backend is written in Flask and supports additional REST API methods to get more
information about all scanned hosts or some particular host from the map. Also, it is possible to
show some additional information about host interactively from the map. For example, currently
open host will be automatically checked for availability with “ping” from the backend, also for
every host many additional features are available: current host can be directly opened in
Shodan, Censys and ZoomEye search engine web interfaces, host can be shown on Google
Maps with all available information about geolocation, also it is possible to make an IP lookup,
or open raw information in JSON directly in browser or from your application with provided API
methods.

We used the TLS-Attacker framework as a TLS core scanning engine and the Grinder framework4

as an orchestrator. In this case, the TLS-Attacker was used as a back-end within the Grinder
framework. To get information about TLS configuration, bugs, and possible attacks, Grinder
provides a wrapper module for TLS-Scanner and TLS-Attacker tools, that is used to handle all
scanning options and analyze the results. TLS-Attacker is a Java-based framework for analyzing
TLS libraries. It is able to send arbitrary protocol messages in an arbitrary order to the TLS peer,
and define their modifications using a provided interface. Grinder uses related TLS-Scanner
module to scan TLS configuration with TLS-Attacker.

Gathered data by TLS-Scanner and TLS-Attacker helps Grinder to count unique attacks and bugs,
also it is possible to count different unique types of entities for every vendor, product, protocol,
and many other types and categories. To get more accurate results, Grinder firstly checks
availability of every host that was found in Shodan or Censys, after that Grinder tries to detect
proper port and other options to successfully start scan with TLS-Scanner, and finally Grinder
saves every result from every host in separate files that later can be parsed more accurately with
additional parser and analyzer.

Results
We scanned about 7500 nodes and found the following:

● 1873 nodes were vulnerable to Sweet 32 attack
● 121 nodes were vulnerable to CBC Padding Oracle attack
● 30 nodes were vulnerable to CRIME attack
● 29 nodes were vulnerable to Logjam attack
● 28 nodes were vulnerable to CVE-2016-2107
● 14 nodes were vulnerable to DROWN attack
● 6 nodes were vulnerable to ROBOT attack
● 1 node was vulnerable to Heartbleed

Vulnerabilities to the ROBOT attack were found in Viprinet product only.

4 https://github.com/RUB-NDS/TLS-Attacker

https://github.com/RUB-NDS/TLS-Attacker


We found one Riverbed SteelHead node vulnerable to Heartbleed attack. The software was
released in 2013.
Riverbed SteelHead nodes released prior 2014 and Viprinet VPN Virtual Hub nodes were
vulnerable to CBC Padding Oracle attack.


