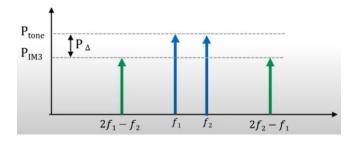
are Tem Mod	nat measurements taken in the mperature onitor Test?	By forcing a current through a diode and measuring the resulting anode-cathode voltage, the junction temperature can be estimated. The current through the junction is a function of temperature in addition to the voltage across the PN junction. This is due to the dependence of charge carrier energy levels on junction temperature. Junction temperature is the temperature at the region between the P-type and N-type semiconductors in diodes and transistors. As the built-in field at							
	-	· · · · · · · · · · · · · · · · · · ·							
tem		Junction temperature is the temperature at the region between the P-type and N-type semiconductors in diodes and transistors. As the built-in field at the junction is reduced (by applying an opposing field externally), more current diffuses across the channel, leading to a rise in junction temperature. This phenomenon occurs due to finite conductivity of the channel and its resultant energy dissipation.							
Mod Calc exp	mperature conitor Test lculated vs cected result ree?	$T_{j}(10\mu\text{A}) = (V_{D} - 742.4)/-1.796$ $T_{j}(80\mu\text{A}) = (V_{D} - 795.6)/-1.609$ $T_{j}(10\mu\text{A}) = (0.0000000000000000000000000000000000$							

			T_j (80µA) = (749. 3 – 795.6)/ –1.609 = 25.78°C (calculated with test Vd)
			Summary: there are several variables that cause the calculated and expected results to be different: - Self-heating, parasitic resistance on traces and connectors, variations in active device node voltages within the current source, and noise
4	10	Describe you see in the spectrum for the mixerSumAndDiff test.	The spectrum exhibits two mixed signals as well as the LO-feedthrough. The feedthrough is not desired and the output of the pre-driver (first VGA) in the Tx path is filtered to remove this signal. The filtering does not remove the signal ideally and simply provides a manageable rejection level to avoid generating blockers at the Tx output (OOB bad for other designated spectrum users; in-band bad for the Rx)
5	10	For test mixerSumAndDiff, take snapshot and report the following. 1. LO frequency and power 2. RF_IN frequency and power 3. RF_OUT (frequency and power of images and LO feedthrough)	Appendix A – Figure 2 shows the spectrum result for this test. 1. LO - fLO = 526MHz - pLO = 0dBm 2. RF_IN (IF) - fIF = 70MHz - pIF = -20dBm 3. RF_OUT - Tone 1 (lower) ~ +30.5dBm (-49.2dBc) @456MHz - LO (center) ~ -18.7dBm @526MHz - Tone 2 (upper) ~ +30.2dBm (-48.9dBc) @596MHz
6	10	What is the conversion Gain of the DUT (RF Mixer)? Does it meet the data sheet spec?	Mean value: 1.28dB The datasheet specifies roughly 1.1dB of conversion gain at fIF = 70MHz, Vcc = 5V, Pin = -10dBm, pLO = 0dBm (Appendix B – Figure 6). We note that in our case, pRF = -20dBm. This result meets the datasheet specification.
7	10	What is ACLR? Report the following for the ACLR test: Carrier Power Adj (ch1) upper power (in dBC) Adj (ch1) lower power (in dBC) NOTE: dBC is dB relative to the carrier (a delta measurement)	ACLR: Adjacent Channel Leakage is the ratio of the transmitted power on the assigned channel to the power measured in a receive filter in the adjacent channel(s). - LO ~ -18.7dBm @526MHz - Tone 1 (lower, fRF1) ~ -49.2dBc @456MHz - Tone 2 (upper, fRF2) ~ -48.9dBc @596MHz Since the LO (in demo board) is in discussion, the ACLR must be calculated by considering the two RF tones as desired and the LO leakage as undesired. The key idea is that the mixer did its job by displacing energy from IF power to RF


			power with a certain "efficiency" so to speak. When the ACLR is poor, the root cause could may be one of a few factors: DUT IM3, DUT harmonics, IF bandwidth of measurement instrument, and so on $ACLR = -18.7 dBm - (33.362 dBm)$ $ACLR \sim -52.6 dB$
8	10	What issues could cause ACLR to suffer (spectral power leaking into adjacent channels)?	Factors leading to poor ACLR: - Poor linearity of active device - Excessive Pin - Insufficient rejection levels from external filter(s)

9	10	Describe the stimulus needed for the oip3 (IMD) test. Does the DUT need to be in its the linear operating region or can this test be done with
		of the output increase (by changing stim power) how much does the spectral power in 3rd order intermod products increase by (hint: it is in relation to the power of the fundamental tones)?

- 1. The stimulus for performing the IMD test must have the following properties
 - Two signals of <u>equal</u> amplitude that are well below the 1-dB compression point of the DUT. If this criterion is not met, the measured IMD will not be accurate as the DUT is compressed and the linear equation below is no longer accurate

$$TOI = Ptone + \frac{p\Delta}{2}$$

- Δf sufficiently small to ensure $2f_1 - f_2$ and $2f_2 - f_1$ fall in-band and accurately characterize the IMD (otherwise it will be a harmonics test)

- 2. The tones must have amplitudes that are below the DUT's P1dB, otherwise the equation above no longer holds and the predicted IIP3 will be inaccurate.
- 3. An increase of 1dB in the fundamental results in an increase of 3dB in the power of third-order products. This is due to third-order products introducing exponents of order three and that dB scale is defined vis-à-vis logarithms

11	10	There are many names for oip3 (IMD) including Third order Intercept (TOI) Does the DUT meet the data sheet spec for Two-Tone Output 3rd Order Intercept?	 1. Yes. Based on the calculations from datasheet results, the DUT meets specifications since the measured values are about 1dBm higher than datasheet values 2. Per the datasheet (Appendix B – Figure 7) and for similar test conditions as our use case, the IIP3 is calculated as follows (with P_{out} = -12dBm reference point for most accurate calculations): P_{tone} = P_{in} = P_{out} - G_{conversion} = -12dBm - 1.14dB P_{tone} ~ -13.4dB TOI = P_{tone} + ΔP/2 ~ -13.4dBm + (-13.4dBm-(-83dBm))/2 TOI ~ 21.4dBm (input referred) - IIP₃ ~ 21.4dBm - OIP₃ = IIP₃ + G_{conversion} = 21.4dBm + 1.14dBm - OIP₃ ~ 22.54dBm 3. The measured results are: - IIP₃ ~ 22.48dBm - OIP₃ ~ 23.74dBm - OIP₃ ~ 23.74dBm A larger TOI would indicate that the DUT is better. The implication
	10	observations, what would indicate better linearity (comparing one device vs another) a	is that the intercept point occurs at a higher Pin, giving the DUT a larger dynamic range at the input (i.e. DUT is more linear than one with a smaller TOI).

		larger TOI or a smaller TOI?	
12	10	In the P1dB test we do a sweep of input power vs output power, what are we looking for? Please report the conversion gain for the linear region and the P1dB.	 The purpose of the P1dB test is to observe the Pout Vs. Pin sweeps and find the Pin value for which Pout drops 1dB from its predicted 1dB trajectory. The 1dB point is arbitrary but very common. One can specify P2dB, P3dB, and so on, depending on the application. In PA selection for radar design, P3dB-P5dB can be used. Measurements Conversion gain (mean) = 1.14dB P1dB (mean) = 11.45dBm

Appendix A: Test Result Screenshots

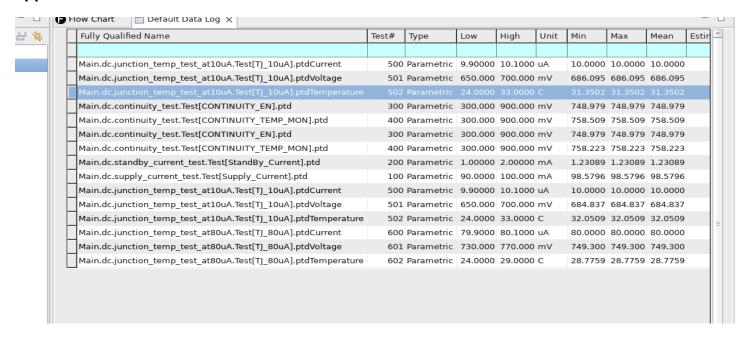


Figure 1. DC Test Results

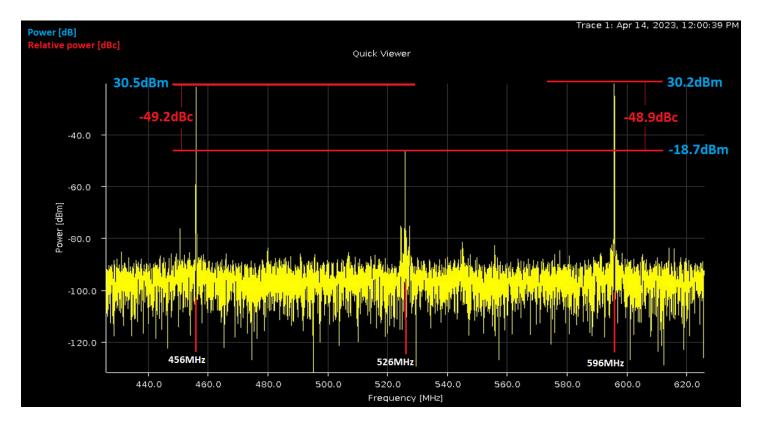


Figure 2. Up-Conversion Test - Spectrum

Fully Qualified Name	Test#	Туре	Low	High	Unit	Min	Max	Mean	Estimated Median	Sdev	Cpk	Cpl
						Ш						
Main.rf.gain.Test[fin70MHz].ptdConvGain	700	Parametric	0.200000	2.00000	dB.	1.28028	1.28028	1.28028	1.28028	0	N/A	N/
Main.rf.gain.Test[fin70MHz].ptdTemperature	701	Parametric	24.0000	29.0000	2	28.0293	28.0293	28.0293	28.0293	0	N/A	N/
Main.rf.aclr.ptdCarrierPower	800	Parametric	-20.0000	-15.0000	dBm	-18.7139	-18.7139	-18.7139	-18.7139	0	N/A	N/
Main.rf.aclr.ptdCh1Upper	801	Parametric	-60.0000	-46.0000	dBc	-48.9697	-48.9697	-48.9697	-48.9697	C	N/A	N/
Main.rf.aclr.ptdCh1Lower	802	Parametric	-60.0000	-46.0000	dBc	-49.2569	-49.2569	-49.2569	-49.2569	C	N/A	N/
Main.rf.aclr.ptdGain	803	Parametric	0.200000	2.00000	dВ	1.28606	1.28606	1.28606	1.28606	0	N/A	N/
Main.rf.aclr.ptdTemperature	804	Parametric	24.0000	29.0000	2	27.8516	27.8516	27.8516	27.8516	0	N/A	N/
Main.rf.p1db.Test[fin70MHz].gain	1000	Parametric	0.200000	2.00000	dB.	1.14656	1.14656	1.14656	1.14656	C	N/A	N/
Main.rf.p1db.Test[fin70MHz].p1db	1001	Parametric	9.00000	14.0000	dBm	11.4597	11.4597	11.4597	11.4597	0	N/A	N/
Main.rf.p1db.Test[fin70MHz].temperature	1002	Parametric	24.0000	29.0000	2	28.1004	28.1004	28.1004	28.1004	0	N/A	N/

Figure 3. Up-Conversion Test – Measured Values

Appendix B: LTC5510 - 1MHz to 6GHz Wideband, High Linearity Active Mixer Datasheet

FEATURES

- Input Frequency Range to 6GHz
- 50Ω Matched Input from 30MHz to >3GHz
- Capable of Up- or Down-Conversion
- OIP3: 27dBm at f_{OUT} = 1575MHz
 1.5dB Conversion Gain
- Noise Figure: 11.6dB at f_{OUT} = 1575MHz
- High Input P1dB: 11dBm at 5V
- 5V or 3.3V Supply at 105mA
- Shutdown Control
- LO Input Impedance Always Matched
- 0dBm LO Drive Level
- On-Chip Temperature Monitor
 -40°C to 105°C Operation (T_C)
- 16-Lead (4mm × 4mm) QFN Package

TYPICAL APPLICATION

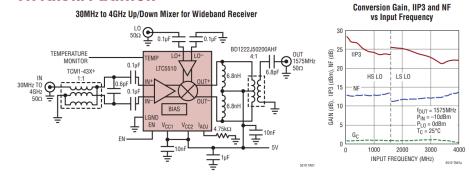


Figure 5. LTC5510 High Level Information

PARAMETER	CONDITIONS		MIN TYP	MAX	UNITS
5V Wideband Upmixer Application: f _{IN} = 30	MHz to 1000MHz, $f_{OUT} = 2140$ MHz, $f_{LO} = f_{IN} + f_{OUT}$, $V_{CC} = 5$	5V, R1 =	4.75kΩ		
Conversion Gain	f _{IN} = 190MHz		1.1		dB
	f _{IN} = 450MHz f _{IN} = 900MHz		1.0 1.0		dB dB
Conversion Gain vs Temperature	$T_C = -40$ °C to 105°C, $f_{IN} = 190$ MHz	•	-0.006		dB/°C
Two-Tone Output 3rd Order Intercept	f _{IN} = 190MHz		25.6		dBm
$(\Delta f = 2MHz)$	f _{IN} = 450MHz		24.6		dBm
	$f_{IN} = 900MHz$		23.9		dBm
SSB Noise Figure	f _{IN} = 190MHz		12.0		dB
	$f_{IN} = 450MHz$		12.2		dB
	$f_{IN} = 900MHz$		12.4		dB
SSB Noise Floor at P _{IN} = +5dBm	$f_{IN} = 800MHz$, $f_{LO} = 3040MHz$, $f_{OUT} = 2140MHz$		-151.4		dBm/Hz
LO-IN Leakage	f _{LO} = 2100MHz to 3500MHz		<-50		dBm
LO-OUT Leakage	f _{LO} = 2100MHz to 3500MHz		<-31		dBm
IN-OUT Isolation	f _{IN} = 30MHz to 1100MHz		>40		dB
IN-LO Isolation	f _{IN} = 30MHz to 1100MHz		>50		dB
Input 1dB Compression	f _{IN} = 190MHz		11.5		dBm
	f _{IN} = 450MHz		11.5		dBm
	$f_{IN} = 900MHz$		11.7		dBm

Figure 6. LTC5510 - Key Specifications (Data Points: closest to fRF = 70MHz)

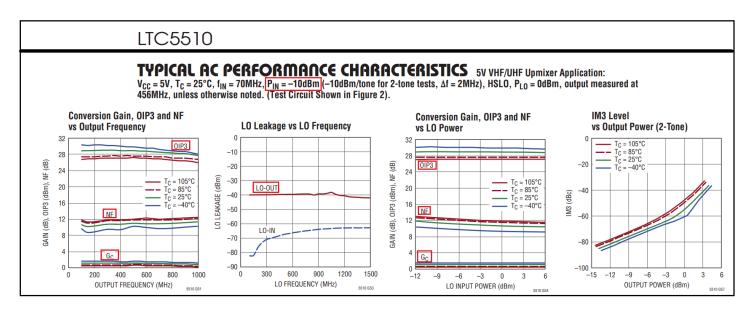


Figure 7. LTC5510 - Key Performance Characterization Data (Plots: to observe trends at fRF = 70MHz)