[image:]
[bookmark: _12zgjz7aewn]
[bookmark: _nir7b0jr5qbg]Using WireShark to Capture Packets
[bookmark: _h7a59n87m0bd]BACKGROUND[image:]
WireShark is an open source network scanner and monitor. It’s an industry favorite for analyzing packets and is used to troubleshoot networks, help design software, and aid in education. In fact, there is a conference every year for WireShark enthusiasts (including many high-level security contractors) called SharkFestTM.
WireShark is freely available on MacOS, Windows, and Linux. It can scan network traffic. This is very helpful - imagine examining packets from background applications - you can see if anything nefarious is happening. WireShark can also be run on some routers and servers.
[bookmark: _dh1q5lv6em4y]DESCRIPTION
This lab is an entry-level look into some of the basic functions of WireShark; we will revisit WireShark in a future chapter. This lab will reference two different websites (innovativedave.com and daveghidiu.com)--all of the content on the website(s) is maintained by me and contains no malicious payloads.
[bookmark: _17ev586kmg9q]REQUIREMENTS
This exercise assumes you have access to a computer that has WireShark on it. It should be part of the Kali Linux distribution, though you can use any computer you wish for this lab (WireShark is freely available for MacOS and Windows as well). Since WireShark will examine all traffic through your NIC, you should close all other applications and all tabs in your web browser before capturing packets otherwise there will be an awful lot of information to wade through.
[bookmark: _s91g909phhod]PART I: Understand the layout of WireShark
1. Upon booting up WireShark, you will notice all the different interfaces that WireShark can see. In my case, I can see that there is activity in the Wi-Fi: e0 and Loopback: lo0 interfaces (note the small thumbnails showing traffic on each one).
[image:]
We will be looking at the WiFi adapter (in this case, Wi-Fi: e0). WireShark will examine all packets that enter and leave your NIC. Many websites will load content from dozens of different places in the background so packet captures can be quite voluminous.
2. The second thing we’ll need to look at are the main functions in the menu bar.There are a number of symbols in the menu bar; we’ll only be playing with a few of them:[image:]
This will start a packet capture. Note that if you have already captured some packets, clicking on this will overwrite existing data.[image:]
This will stop a packet capture.[image:]
This will start a packet capture. Note that if you have already captured some packets, clicking on this will overwrite existing data.[image:]
This will start a packet capture. Note that if you have already captured some packets, clicking on this will overwrite existing data.
3. It’s also worth noting that the default mode for WireShark is promiscuous mode. This means that WireShark will examine any packet it encounters regardless of if that packet is destined for your computer. You can turn it off in the “Preferences” section, though you don’t need to because we’ll be using filters to examine traffic.
[bookmark: _5ypdkgsgfnpk]PART II: Understand the TCP Handshake
1. We’ll also need to know the fundamentals of a TCP handshake.
a. There are three steps. The initiating computer will send a synchronization request to the receiving computer:
[image:]
b. Next, the receiving computer will respond with an acknowledgement and synchronization of its own:
[image:]
c. Lastly the sending computer will send an acknowledgement:
[image:]
d. Now both computers are ready to exchange information.
2. When you are examining packets that use TCP, you may encounter the SYN-ACK. Keep your eyes peeled!
[bookmark: _ypl4ajvc0p2q]PART III: Capture some packets over HTTP
1. Close all your applications (except for a web browser and WireShark). It’s a good idea to close all but one tab in your browser. This lab will be looking at all the packets zooming around, so the less traffic we have to wade through, the better. Capture packets with WireShark by pressing the shark fin icon to start. After a few seconds, press the red square to stop. Most of the activity should be between computers on the network (for many home routers, the IP addresses are between 192.168.0.1 and 192.168.255.254 range). You might even see some ARPing (“Who has 192.168.0.11? Tell 192.168.0.1”) as your computer tries to settle into the network.
	[bookmark: _twu05pinb2pv]EVIDENCE #1

	[image:]
INSERT THE IMAGE OF THE INITIAL PACKET CAPTURE.

2. Start another packet capture (no need to save the current one). Once started, let’s look at the communication needed to serve a website. Go to your browser and go to:
http://www.innovativedave.com/security
As soon as the page loads head back over to WireShark, wait a second or two, and stop the capture.
3. Again, there will most likely be a lot of packets that have been captured. Most of them are the noise from your computer communicating with other computers on the network, though some of them should be HTTP requests. Most of the network traffic should have source and destination IP addresses that are similar (usually starting with 192.168) and will usually use the TCP or ARP protocol. We’re not interested in those; we want to see only the HTTP requests.

Click in the filter bar (under the shark fin and the stop button), and in the spot where it says “Apply a display filter…”, type in “http”. This will filter out any packet that is not using the HTTP protocol.
[image:]
If everything goes right you probably only have a few different packets to look at (because most traffic with your computer isn’t HTTP).
	[bookmark: _o21bi2ui2qsf]EVIDENCE #2

	[image:]
INSERT THE IMAGE OF THE INITIAL PACKET CAPTURE. LOOK CAREFULLY AT THE CAPTURE. INDICATE ANY RED FLAGS.

[bookmark: _u990eouwu12m]PART III: Capture some packets over HTTPS
1. Again, close all your tabs in your browser, save for one. Go over to WireShark and start a capture. Head back to your browser and go to:
https://www.daveghidiu.com/security
As soon as the page loads, head back over to WireShark, wait a second or two, and stop the capture.
2. We want to filter for HTTPS instead of HTTP. We do this by applying the “SSL” filter.
3. It might be the case that when you filter for SSL there is still a lot of other noise. That’s probably because more communications are whizzing through your computer than just the website information. Some of this noise might be services that your computer uses without you even knowing it. But the problem is that it’s kind of hard to sift through all this data if we don’t even know the IP address we are looking for.
4. Let’s head over to a terminal and find the IP for daveghidiu.com. This will make our packet examination a little bit easier:
ping daveghidiu.com -c 1
[image:]
5. Sweet! Looks like the IP address of daveghidiu.com is 192.232.223.120. Now we can filter the output by IP address; this will laser-focus our analysis. Let’s filter the capture data in WireShark. Using the ip.addr search string, we can look for any traffic where the IP address was the source or the destination:
ip.addr == 192.232.223.120
6. This is interesting because we can see a number of different protocols that were used to communicate with the server. It looks like a lot of TCP (in fact, we can see that TCP three-way handshake we talked about before). There is also one entry that is HTTP. That’s a little alarming because the server is HTTPS! If you click on the entry, you’ll see the related data in the pane below.
Upon further investigation, it looks like that data is a 302 redirect; most likely the HTTPS redirect. So we can conclude that an HTTP packet makes sense.
[image:]
7. Let’s focus our interrogation. Let’s change the filter to show not only the IP address, but any traffic that was HTTPS (because that’s what we are really after):
ip.addr == 192.232.223.120 && ssl
	[bookmark: _dsipjkgz701d]EVIDENCE #3

	[image:]
INSERT IMAGE OF THE DATA FILTERED BY IP ADDRESS AND HTTPS.

Notice that we can’t make sense of the content in the packets; that’s because they are encrypted! We’re using HTTPS after all!
[bookmark: _wclxn9jk5esz]CONCLUSION
WireShark is great for monitoring data that is coming into and out of the NIC on your computer. This is great for troubleshooting as you’ll be able to granularly check data (great for finding latency issues, malware issues, etc.)
For further exposure to WireShark, check out the following:
· Wireshark User’s Guide
· How to Use Wireshark to Capture, Filter and Inspect Packets
· How to Use Wireshark: A Complete Tutorial
CC-BY-NC Dave Ghidiu	Finger Lakes Community College
CC-BY-NC Dave Ghidiu	Finger Lakes Community College
image7.png
eoe M The Wireshark Network Analyzer
A m L@ =

[W[Apply a display filter .. <38/>

x|

Welcome to Wireshark

Capture

..using this filter: [[Enter a capture filter ... <] Allinterfaces shown v

Ethernet: en0
p2p0
awdio
FireWire: fw0
‘Thunderbolt Bridge: bridge0
utund

i: ent
‘Thunderbolt 1: en2
Loopback: 100
gifo

Learn

User's Guide - Wiki - Questions and Answers - M
You are running Wireshark 2.4.4 (v2.4.4-0-g90a7be1).

7 Ready to load or capture No Packets Profie: Default

image14.png

image15.png

image9.png

image1.png

image10.png
[J-2n ".@,

image16.png
D=

image6.png
:| _ AcK _,Q

image5.png
? Y QA] E

Time Source Destination Protocol Length Info

12.957027 192.168.1.15 192.168.1.1 DNS 65 Standard query @xa@42 SOA
68 13.032112 192.168.1.12 192.168.1.5 Tcp 183 55687 — 8009 [PSH, ACK] Se
69 13.034310 Asus_82:11:63 Broadcast ARP 42 Who has 192.168.0.11? Tell
70 13.034379 192.168.1.12 192.168.1.5 TCcp 66 55687 — 8009 [ACK] Seq=352
71 13.040048 192.168.1.12 192.168.1.10 Tcp 183 55692 — 43018 [PSH, ACK] S
72 13.043619 192.168.1.10 192.168.1.12 Tcp 183 43018 — 55692 [PSH, ACK] S
73 13.043731 192.168.1.12 192.168.1.10 Tcp 66 55692 — 43018 [ACK] Seq=35
74 13.059317 192.168.1.12 192.168.1.10 TCcp 183 55691 — 8009 [PSH, ACK] Se
75 13.067390 192.168.1.10 192.168.1.12 TCcp 183 8009 — 55691 [PSH, ACK] Se
76 13.067489 192.168.1.12 192.168.1.10 Tcp 66 55691 — 8009 [ACK] Seq=352
77 13.155076 192.168.1.12 192.168.1.1 DNS 65 Standard query ©x@126 SOA 1
78 13.373022 192.168.1.12 192.168.1.1 DNS 65 Standard query @x8aal SOA 1

Frame 1: 378 bytes on wire (3024 bits), 378 bytes captures (3024 bits) on interface @

Ethernet II, Src: Private_58:cc:6c (@@:bb:da:58:cc:61), Dst: Apple_be:35:98 (21:c3:ea:al:35:98)
Internet Protocol Version 4, Src: 192.168.1.20, Dst: 192.168.1.12

User Datagram Protocol, Src Port: 44794, Dst Port: 59630

Data (336 bytes)

vvv vy

image2.png
Destination
0.007027 192.168.1.15 192.168.1.1

image12.png
[XOX] A wi-Fizenl
Am 400 MARE R « =]] »
e) e -

No. Time Source Destination Protocol _ Length _Info.
325 9.5287 192.168.1.18 184.168.183.1 HTTP. 521 GET /security/
329 9.6305 184.168.183.1 192.168.1.18 HTTP. 563 HTTP/1.1 200 OK
331 0.6417 192.168.1.18 184.168.183.1 HTTP 585 GET /security/m
332 0.7441 184.168.183.1 192.168.1.18 HTTP 516 HTTP/1.1 200 OK

) Frame 1: 115 bytes on wire (944 bits), 115 bytes captures (944 bits) on interface @

» Ethernet II, Src: Apple_be:32:88 (20:c9:d0:aa:33:22), Dst: Azurewav_7d:3a:dc (d@:e7:82:aa:22:23)
P Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.6

p Transmission Control Protocol, Src Port: 53112, Dst Port: 8009, Seq: 1, Ack: 1, Len 117

0000 85 59 Of 22 36 aa b9 45 f3 82 86 e6 40 a® 5c b2
0010 87 d9 f7 el bf e5 62 @d 81 69 bl 68 e8 80 64 65
0020 ff d8 e7 ba 86 87 40 c9 5a @5 6c 6 e8 32 dd ba
0030 8f fe a2 66 a4 13 e5 17 d1 7 93 97 c2 39 18 58
0040 83 22 ef ed a2 53 3f 49 23 67 b5 fb bb 43 39 11
0050 77 77 b7 5f b9 bf c4 34 94 cO 24 51 b5 44 18 12

0060 12 cb 27 59 @a Of c4 67 41 53 a6 44 40 b2 56 e8 .. S I
0070 7a a7 9f 9c 6¢ 66 b2 8a cl @b 18 Ge fa 34 04 @c .h7..Z.X).g]*
0080 1c 9f 31 84 a9 eb 29 3c 3d 21 ec 01 75 28 dd f6 Jj..M... .h.gi>&.

0090 8 d3 7d 86 96 9e 72 6d 57 c8 20 3a 6e 4b 5d @b ..E<I6.. .X.

image11.png
root@kaliz~/david# ping daveghidiu.com -c 1
PING daveghidiu.com (192.232.223.120) 56(84) bytes of data.
64 bytes from 192.232.223.120: icmp_seq=1 ttl=42 time=51.8 ms

--- daveghidiu.com ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 51ms
rtt min/avg/max/mdev = 51.492/51.492/51.492/51.492 ms

root@kali:~/david

image3.png
HADNUO VOB AVNODONOU AR DS

65
61

2f
61
6f
65
6f
20
76
70
63
72
0a
20
68
30

3a
72
0a
4c
46
2f
64
75
61
75
64
65
73
6f
65
3c
53
69
3c
79

20
73
od
20
2f
45
3e
6e

6e
6f

3a
6d
3c
61
65

2f
3e

..Conten
text/htm
et=iso-8
.<!DOCTY
PUBLIC "

><body>
d</hl>.<
cument h
<a href
//davegh
/securit
/a>.</p>
ddress>A
rver at

iu.com P
address>

t-Type:
1; chars
859-1...

PE HTML

p>The do
as moved
="https:
idiu.com
y">here<
«<hr>.<a
pache Se
daveghid
ort 80</
.</body>

image13.png
R R »

Exprossion. N

Destination o
192.168.1.16 Client Hello

192.168.1.15 Server Hello

192.168.1.14 Certificate, Se
192.168.1.21 Client Key Exch
192.168.1.14 New Session Tic
192.168.1.11 Application Dat

) Frame 1: 77 on wire (616) bits, 77 bytes captures (616 bits) on interface @
B Ethernet II, Src: Apple_be:109:49(20:c9:d0:aa:33:22), Dst: Azurewav_7d:3a:dc (d@:e7:82:aa:22:23)
P Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.6

P Transmission Control Protocol, Src Port: 53162, Dst Port: 8109, Seq: 1, Ack: 1, Len 77

<4 9e 6 7c fd 21 1f df 93 7f 87 85 b4 71 e5 of
e4 e7 bl 55 3c b3 f4 71 5 bd 79 22 a9 6b 11 01
03 4 35 ef 79 a8 05 4d 29 28 11 9e b8 8e b5 1f
82 26 8d 71 a5 38 c8 f@ 32 49 al 99 36 ca 5 41
85 6d cb 72 aa a6 89 1f a9 2b 41 da 9c 88 54 2a
8f f4 d7 9f 21 23 d9 02 6 fe 8 a7 f8 61 16 ef
80 4c 12 6d b5 b5 e9 07 7d e@ 5b 35 52 a2 69 14
a8 co a5 78 29 87 ¢3 9f 1c 6c c9 80 6f 44 53 fe
€0 6b 66 3e 42 7d ee 2c d3 ba ea e5 cd 5c 8a 85
03 cd a5 27 3b 5d bd 66 80 a7 5a 30 bd 95 09 75

image8.png
00 A Wi-

Amdoe MmMAREG R e~=71T1]] »
R [Apply a display filter.] Expression. "
0o Time Source Destnaton Protocol Lengh o
69 0.5287 192.168.1.18 192.168.1.17 Tcp 161 11854 — 17088
70 0.6305 192.168.1.21 192.168.1.13 Tcp 180 39674 — 10421
71 0.6417 192.168.1.20 192.168.1.12 Tcp 104 2984 — 33795
73 0.8527 192.168.1.17 192.168.1.16 Tcp 061 1122 — 48240
74 0.9329 192.168.1.13 192.168.1.16 Tcp 041 51001 — 44298
75 1.0557 192.168.1.13 192.168.1.14 Tcp 102 13553 — 14261

Frame 1: 115 bytes on wire (944 bits), 115 bytes captures (944 bits) on interface @

Ethernet II, Src: Apple_be:32:88 (20:c9:d0:aa:33:22), Dst: Azurewav_7d:3a:dc (d@:e7:82:aa:22:23)
Internet Protocol Version 4, Src: 192.168.1.12, Dst: 192.168.1.6

Transmission Control Protocol, Src Port: 53112, Dst Port: 809, Seq: 1, Ack: 1, Len 117

AAAAI

0000 al 3f b5 97 38 9e 18 fd 63 87 75 82 9e 52 07 ee
0010 c1 86 de 50 3f cc 71 d0 13 eb al 83 3e e8 fa @5
0020 ©a 87 2 74 @b 2c 73 fd <9 9d 50 7e c8 82 fa fd
0030 3c 08 cb d8 9b 12 cc d3 95 2a b8 88 3¢ 17 29 ed
0040 16 d8 1b 00 @1 04 20 77 99 51 a3 5f 59 76 f7 54
0050 63 ca 54 ed df el 5 7b a3 1f d4 b7 e3 88 2e 5b
0060 ©b 8f fb eb 28 3d dd 3c c8 Of 6b 37 a2 8c 18 o
0070 €2 14 39 6b cd 3e 14 3b 96 ec 16 56 38 0 98 b8
0080 59 90 c9 2f 53 f7 c6 e2 ac ec 6e 86 d7 dd el ac
0090 e6 be da 05 2d bc ed f5 69 43 32 02 20 8c d3 cd

image4.png
0001001010000101001000010017010
Let's Bc Carcful Out There! 11010010101010110
1UUUIUUUIUTUUUIUIUU1100010001010001

