

### H.K.E. SOCIETY'S SMT. VEERAMMA GANGASIRI DEGREE COLLEGE FOR WOMEN, GULBARGA - 585 102

NAAC- ACCREDITED "A" GRADE (3rd Cycle) Affiliated to Akkamahadevi Women's University, Vijayapura



#### **NEP SYLLABUS**

### Programme outcomes (CO)

At the end of the program the student should be able to:

- **PO1.** Knowledge and understanding of concepts of microbiology and its application in pharma, food, agriculture, beverages, nutraceutical industries.
- **PO2.** Understand the distribution, morphology and physiology of microorganisms and demonstrate the skills in aseptic handling of microbes including isolation, identification and maintenance
- **PO3.** Competent to apply the knowledge gained for conserving the environment and resolving the environmental related issues.
- **PO4.** Learning and practicing professional skills in handling microbes and contaminants in laboratories and production sectors.
- **PO5.** Exploring the microbial world and analyzing the specific benefits and challenges.
- **PO6.** Applying the knowledge acquired to undertake studies and identify specific remedial measures for the challenges in health, agriculture, and food sectors.
- **PO7.** Thorough knowledge and application of good laboratory and good manufacturing practices in microbial quality control.
- **PO8.** Understanding biochemical and physiological aspects of microbes and developing broader perspective to identify innovative solutions for present and future challenges posed by microbes.
- **PO9.** Understanding and application of microbial principles in forensic and working knowledge about clinical microbiology.
- **PO10.** Demonstrate the ability to identify ethical issues related to recombinant DNA technology, GMOs, intellectual property rights, biosafety and biohazards.
- **PO11.** Demonstrate the ability to identify key questions in microbiological research,optimize research methods, and analyse outcomes by adopting scientific methods, there by improving the employ ability.

**PO12.** Enhance and demonstrate analytical skills and apply basic computational and statistical techniques in the field of microbiology

## Programme Specific Outcomes (PSOs) for B.Sc Microbiology

| Sl. no | On completing the course, the student will be able to:         |  |  |
|--------|----------------------------------------------------------------|--|--|
| PSO 1  | Gain insight of Microbiology starting from history, understand |  |  |
|        | the nature and basic concepts of microbiology, microbial       |  |  |
|        | biochemistry, microbial ecology.                               |  |  |
| PSO 2  | Acquire the skill in the use and care of basic microbiological |  |  |
|        | equipment; performance of basic laboratory procedures, proper  |  |  |
|        | collection and forwarding of specimens to the laboratory.      |  |  |
| PSO 3  | Emphasize distribution, morphology and physiology of           |  |  |
|        | microorganisms in addition to skills in aseptic procedures,    |  |  |
|        | isolation and identification.                                  |  |  |
| PSO 4  | Analyse the relationships among microbes and plants/animals/   |  |  |
|        | humans.                                                        |  |  |
| PSO 5  | Understand the applications of Microbiological sciences in     |  |  |
|        | Agriculture, Medicine, Environment, industry etc.              |  |  |
| PSO 6  | Explore the application of genetic engineering                 |  |  |

# Course Outcomes (COs)

Course title: General Microbiology Course code: DSC-1T, MBL 101

| Sl.  | On completing the course, the student will                                                             | PSOs      | Cognitive         |
|------|--------------------------------------------------------------------------------------------------------|-----------|-------------------|
| no   | be able to:                                                                                            | addressed | levels            |
| CO 1 | Understand the basic concepts of microbiology.                                                         | 1,2       | R, U              |
| CO 2 | Learn and practice professional skills in handling microbes.                                           | 1,2,4     | R, U, C           |
| CO 3 | Understand the contributions of different scientists.                                                  | 1,2       | U, An             |
| CO 4 | Understand and explain basic principles of different types of microscopes.                             | 4,7       | R, U, An          |
| CO 5 | Understand the ultra structure of Bacterial cell and differentiate between Prokaryotes and Eukaryotes. | 4,5,8     | U, Ap,<br>An,E, C |

**Course title: General Microbiology Practicals** 

Coursecode: DSC-1P, MBL 101

| Sl.  | On completing the course, the student will be                                            | PSOs      |
|------|------------------------------------------------------------------------------------------|-----------|
| no   | able to:                                                                                 | addressed |
| CO 1 | Study of different microorganisms with permanent slides, motility of organisms.          | 1,2,4     |
| CO 2 | Attain the practical skills in microscopy and their handling techniques.                 | 2,4       |
| CO 3 | Understand working and mechanism of different equipments and tools used in Microbiology. | 1,4,7     |
| CO 4 | Perform the staining technique of various microorganisms.                                | 4,7       |

Course title: Microbial Biochemistry and Physiology

Course code: DSC-2T, MBL 102

| Sl.  | On completing the course, the student will                                                                                          | PSOs      | Cognitive |
|------|-------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------|
| no   | be able to:                                                                                                                         | addressed | levels    |
| CO 1 | Understand the basic Biochemical concepts.                                                                                          | 2,8       | U, R      |
| CO 2 | Understand the importance of nutritrional requirements, microbial growth and factors influencing microbial growth and growth curve. | 7,8       | U, An, E  |
| CO 3 | Understand the general stratergy of metabolism and explain various metabolic processes operating in living cell.                    | 5,8       | U, An, E  |
| CO 4 | Illustrate various metabolic pathways like EMP cycle, TCA, ED pathway, Glyoxylate cycle and Beta oxidation cycle.                   | 8,11      | R, U, An  |
| CO 5 | Understand the concept of fermentation and respiration.                                                                             | 7,8       | U, An     |
| CO 6 | Describe the importance of photosynthesis in microorganisms.                                                                        | 5,7       | R, U, An  |

**Course title: Microbial Biochemistry and Physiology Practicals** 

Course code: DSC-2P, MBL 102

| Sl.  | On completing the course, the student will be  | <b>PSOs</b> |
|------|------------------------------------------------|-------------|
| no   | able to:                                       | addressed   |
| CO 1 | Preperation of different solutions             | 7,8         |
| CO 2 | Qualitative and Quantitative identification of | 7,8         |
|      | different Biomolecules.                        |             |
| CO 3 | Determination of Bacterial growth              | 7,8         |

Course title: Microbial Diversity Course code: DSC-3T, MBL 103

| Sl.  | On completing the course, the student will     | PSOs      | Cognitive |
|------|------------------------------------------------|-----------|-----------|
| no   | be able to:                                    | addressed | levels    |
| CO 1 | Knowledge about microbes and their diversity.  | 1,3,5     | R, U      |
| CO 2 | Understand the classification of               | 2,5       | R,U       |
|      | Biosystematics.                                |           |           |
| CO 3 | Study, characters, classification and economic | 2,3       | R,U, An   |
|      | importance of Pro-eukaryotic and Eukaryotic    |           |           |
|      | microbes.                                      |           |           |
| CO 4 | Knowledge about viruses and their diversity    | 2,3       | R, U      |

**Course title: Microbial Diversity Practicals** 

Course code: DSC-3P, MBL 103

| Sl.  | On completing the course, the student will be   | <b>PSOs</b> |
|------|-------------------------------------------------|-------------|
| no   | able to:                                        | addressed   |
| CO 1 | Isolation of bacteria from soil, air and water  | 2,4,7       |
| CO 2 | Cultivation of Cyanobacteria and Actinomycetes. | 2,4         |
| CO 3 | Study of different microorganisms               | 2,5         |

**Course title: Microbial Enzymology and Metabolism** 

Course code: DSC-4T, MBL 104

| Sl.  | On completing the course, the student will   | PSOs      | Cognitive |
|------|----------------------------------------------|-----------|-----------|
| no   | be able to:                                  | addressed | levels    |
| CO 1 | Understand the general stratergy of          | 2,8       | U, An, E  |
|      | metabolism and explain various metabolic     |           |           |
|      | processes operating in living cell.          |           |           |
| CO 2 | Understand the concept of fermentation and   | 1,2       | U, Ap     |
|      | respiration.                                 |           |           |
| CO 3 | Differentiating concepts chemoheterotrophic  | 1,8       | U, An, E  |
|      | metabolism and chemolithotrophic             |           |           |
|      | metabolism                                   |           |           |
| CO 4 | Understand the concept of enzyme activities, | 1,2       | U, An, E  |
|      | enzyme kinetics, classification and factor   |           |           |
|      | influencing enzyme activity.                 |           |           |
| CO 5 | Understand the concepts of enzyme            | 1,2       | U, Ap, An |
|      | regulation.                                  |           |           |
| CO 6 | Study different metabolic pathways in        | 2,8       | R, U, C   |
|      | microorganisms.                              |           |           |

**Course title: Microbial Enzymology and Metabolism Practicals** 

Course code: DSC-4P, MBL 104

| Sl.  | On completing the course, the student will be     | <b>PSOs</b> |
|------|---------------------------------------------------|-------------|
| no   | able to:                                          | addressed   |
| CO 1 | Estimate sugars, proteins by biochemical methods. | 2,4,8       |
| CO 2 | Estimation of DNA, RNA and polyphenols.           | 2,4,10      |
| CO 3 | Demonstration of alcoholic fermentation           | 2,4         |
| CO 4 | Effect of variables on enzyme activity.           | 2,4         |