"Let's Write An Email - Technical
Implementation Guide

Architecture Overview

Frontend Stack

Framework: Next.js with React and TypeScript
Styling: Tailwind CSS for utility classes
Game Engine: Plain JavaScript (intentionally janky) OR Typescript OR Unity
Terminal Ul: Custom components with retro styling
Sadcoin.net: Raw HTML with minimal CSS.
o /buy page to purchase Sadcoin
o /games page to link to letswritean.email game

Backend Services

e Email Generation: Multiple LLM integration via AWS Bedrock
o Officer: Claude/GPT-4 (smart model)
o Agent: Mid-tier model
o Monkey: Cheapest/dumbest model available
o Intern: Balanced model / no model (user plays as Intern)
e Email Delivery: Eliza agent integration
e State Management: React state (no persistence needed for MVP)

Web3 Integration (Post-MVP but Pre-Hackathon Deadline)

e Wallet Connect: Multiple chain support
e Chainlink Functions: Email reply — NFT minting
e Smart Contracts with Chainlink Pricefeeds: SADCoin and FEELS tokens

Component Breakdown

1. Terminal Container (/components/Terminal)

interface TerminalProps {
aspectRatio: "4:3" // Core viewport

http://sadcoin.net

backgroundColor: "#000000"
textColor: "#00FF00"
borderStyle: "retro"

}

Key features:

Fixed 4:3 aspect ratio that scales
Green monospace text

Retro border styling

Scrollable text areas where needed

2. Game State Manager (/components/GameStateManager)
States to track:

BOOT_SCREEN
WALLET_CONNECT
CHARACTER_SELECT
EMAIL_INBOX
EMAIL_READING
MINI_GAME_[TYPE]
EMAIL_WRITING
EMAIL_SENT

3. Email System (/components/EmailSystem)

interface Email {
from: "officer" | "agent" | "monkey" | "yourself"
subject: string // Pre-written prefix
preview: string // First 5 words
fullContent?: string // Al generated on click

}

4. Mini-Games (Intentionally Buggy)
Banana Game (/games/BananaGame)

e Controls: A/D (move), W (reach up), S (pick from floor), Space (jump)
e Bug Features:

o Inconsistent hitboxes

o Random control lag

o Bananas occasionally phase through player
o Score randomly resets

Sniper Game (/games/SniperGame)

e Controls: Mouse to aim, click to "deliver severance"
e Bug Features:

o Scope drift

o Random zoom glitches

o Targets occasionally invincible

Golf Game (/games/GolfGame)

e Controls: Position player, use power meter

e Bug Features:
o Power meter moves at random speeds
o Ball physics occasionally moon gravity
o Hole sometimes moves

Al Prompt Architecture

Base System Context

const BASE_CONTEXT = {
game: "Let's Write an Email",
setting: "SadCoin corporate office",
tone: "Corporate absurdist humor",
userRole: "intern",
task: "Help user write actual email while playing"

Character Prompts

Officer

const OFFICER_PROMPT = {
personality: "Corporate buzzword enthusiast, deadline obsessed",
outputFormat: "3 high-level thoughts + call to action”,
vocabulary: ["synergies", "leverage", "mission-critical", "circle back"],
emailLength: "3-4 paragraphs"

}

Agent

const AGENT_PROMPT = {
personality: "Everything is code, speaks in double meanings",
outputFormat: "3 specific details + incomprehensible attachment",
hiddenMeanings: true,
attachmentType: "fake dossier or SWOT analysis"

}

Monkey

const MONKEY_PROMPT = {
personality: "Chaotic, banana-obsessed, random CAPS",
outputFormat: "Stream of consciousness with tangents”,
mustinclude: ["banana references", "GM", "fire emq;ji"],
coherence: 0.3 // Low coherence score

}

Implementation Phases

Phase 1: Core Terminal Ul (Day 1)

Terminal component with green-on-black styling
Basic navigation (keyboard + mouse)
Wallet/Google connect flow

Character selection (intern only for MVP)

PN

Phase 2: Email System (Day 2)

Inbox display with 4 emails
Dynamic email generation on click
Al integration for each character
Scrollable email reader

nN =

Phase 3: Mini-Games (Day 3-4)

Banana game (simplest)
Sniper game (if time)

Golf game (stretch goal)
Intentional bugs for each

howonh =

Phase 4: Email Assembly (Day 5)

wnh =

Combine inputs from all interactions
Generate final email

Send to user's real email

Optional: Reply triggers NFT

Phase 5: SAD Economy (Post-MVP)

honh =

SADCoin integration

FEELS generation from gameplay
Staking mechanism

Cross-chain via CCIP

Key Technical Decisions

Why Next.js?

Server-side rendering for SEO (letswritean.email)
API routes for LLM calls

Easy deployment to Vercel

TypeScript for type safety

Why Multiple LLMs?

Creates personality differences

Cost optimization (monkey = cheap)
Comedic effect from quality variance
AWS Bedrock provides easy access

Why Intentionally Buggy?

We don’t have time to make it perfect
Creates frustration — productivity loop
Authentic "sad" experience

Makes email writing seem appealing
Memorable user experience

Team Responsibilities

Tippi (Product/integration)

Al prompt engineering

Chainlink integration research
Documentation and team coordination
Playtesting and feedback

Jason (Creative/Design)

e Game design and flow

e Asset creation

e Dialogue and humor writing
e Visual language consistency

Crome/Vasiliy (Backend/Architecture)

Smart contract development
Backend architecture

Reluctant frontend assistance
Code quality (intentionally variable)

Will (Frontend/Music?)

Ul implementation

Email system integration

Potential: Sad piano soundtrack
Good Rabbit experience applicable

Eman (Smart Contracts)?

SAD coin contract
FEELS token mechanics
Cross-chain architecture
Staking implementation

Critical Path Iltems

Terminal Ul with basic navigation (blocks everything)
Email generation with Al (core feature)

At least ONE mini-game (proves concept)

Email delivery system (completes loop)

Basic wallet integration (for Web3 requirement)

akrowbd~

Stretch Goals

All three mini-games

Full SAD/FEELS economy
Cross-chain support
Leaderboard system

Chat room at water cooler
Custom sad music soundtrack

	`Let's Write An Email - Technical Implementation Guide
	Architecture Overview
	Frontend Stack
	Backend Services
	Web3 Integration (Post-MVP but Pre-Hackathon Deadline)

	Component Breakdown
	1. Terminal Container (/components/Terminal)
	2. Game State Manager (/components/GameStateManager)
	3. Email System (/components/EmailSystem)
	4. Mini-Games (Intentionally Buggy)
	Banana Game (/games/BananaGame)
	Sniper Game (/games/SniperGame)
	Golf Game (/games/GolfGame)

	AI Prompt Architecture
	Base System Context
	Character Prompts
	Officer
	Agent
	Monkey

	Implementation Phases
	Phase 1: Core Terminal UI (Day 1)
	Phase 2: Email System (Day 2)
	Phase 3: Mini-Games (Day 3-4)
	Phase 4: Email Assembly (Day 5)
	Phase 5: SAD Economy (Post-MVP)

	Key Technical Decisions
	Why Next.js?
	Why Multiple LLMs?
	Why Intentionally Buggy?

	Team Responsibilities
	Tippi (Product/Integration)
	Jason (Creative/Design)
	Crome/Vasiliy (Backend/Architecture)
	Will (Frontend/Music?)
	Eman (Smart Contracts)?

	Critical Path Items
	Stretch Goals

