
`Let's Write An Email - Technical
Implementation Guide

Architecture Overview

Frontend Stack

●​ Framework: Next.js with React and TypeScript
●​ Styling: Tailwind CSS for utility classes
●​ Game Engine: Plain JavaScript (intentionally janky) OR Typescript OR Unity
●​ Terminal UI: Custom components with retro styling
●​ Sadcoin.net: Raw HTML with minimal CSS.

○​ /buy page to purchase Sadcoin
○​ /games page to link to letswritean.email game

Backend Services

●​ Email Generation: Multiple LLM integration via AWS Bedrock
○​ Officer: Claude/GPT-4 (smart model)
○​ Agent: Mid-tier model
○​ Monkey: Cheapest/dumbest model available
○​ Intern: Balanced model / no model (user plays as Intern)

●​ Email Delivery: Eliza agent integration
●​ State Management: React state (no persistence needed for MVP)

Web3 Integration (Post-MVP but Pre-Hackathon Deadline)

●​ Wallet Connect: Multiple chain support
●​ Chainlink Functions: Email reply → NFT minting
●​ Smart Contracts with Chainlink Pricefeeds: SADCoin and FEELS tokens

Component Breakdown

1. Terminal Container (/components/Terminal)
interface TerminalProps {
 aspectRatio: "4:3" // Core viewport

http://sadcoin.net

 backgroundColor: "#000000"
 textColor: "#00FF00"
 borderStyle: "retro"
}

Key features:

●​ Fixed 4:3 aspect ratio that scales
●​ Green monospace text
●​ Retro border styling
●​ Scrollable text areas where needed

2. Game State Manager (/components/GameStateManager)

States to track:

●​ BOOT_SCREEN
●​ WALLET_CONNECT
●​ CHARACTER_SELECT
●​ EMAIL_INBOX
●​ EMAIL_READING
●​ MINI_GAME_[TYPE]
●​ EMAIL_WRITING
●​ EMAIL_SENT

3. Email System (/components/EmailSystem)
interface Email {
 from: "officer" | "agent" | "monkey" | "yourself"
 subject: string // Pre-written prefix
 preview: string // First 5 words
 fullContent?: string // AI generated on click
}

4. Mini-Games (Intentionally Buggy)

Banana Game (/games/BananaGame)

●​ Controls: A/D (move), W (reach up), S (pick from floor), Space (jump)
●​ Bug Features:

○​ Inconsistent hitboxes
○​ Random control lag

○​ Bananas occasionally phase through player
○​ Score randomly resets

Sniper Game (/games/SniperGame)

●​ Controls: Mouse to aim, click to "deliver severance"
●​ Bug Features:

○​ Scope drift
○​ Random zoom glitches
○​ Targets occasionally invincible

Golf Game (/games/GolfGame)

●​ Controls: Position player, use power meter
●​ Bug Features:

○​ Power meter moves at random speeds
○​ Ball physics occasionally moon gravity
○​ Hole sometimes moves

AI Prompt Architecture

Base System Context
const BASE_CONTEXT = {
 game: "Let's Write an Email",
 setting: "SadCoin corporate office",
 tone: "Corporate absurdist humor",
 userRole: "intern",
 task: "Help user write actual email while playing"
}

Character Prompts

Officer
const OFFICER_PROMPT = {
 personality: "Corporate buzzword enthusiast, deadline obsessed",
 outputFormat: "3 high-level thoughts + call to action",
 vocabulary: ["synergies", "leverage", "mission-critical", "circle back"],
 emailLength: "3-4 paragraphs"
}

Agent
const AGENT_PROMPT = {
 personality: "Everything is code, speaks in double meanings",
 outputFormat: "3 specific details + incomprehensible attachment",
 hiddenMeanings: true,
 attachmentType: "fake dossier or SWOT analysis"
}

Monkey
const MONKEY_PROMPT = {
 personality: "Chaotic, banana-obsessed, random CAPS",
 outputFormat: "Stream of consciousness with tangents",
 mustInclude: ["banana references", "GM", "fire emoji"],
 coherence: 0.3 // Low coherence score
}

Implementation Phases

Phase 1: Core Terminal UI (Day 1)

1.​ Terminal component with green-on-black styling
2.​ Basic navigation (keyboard + mouse)
3.​ Wallet/Google connect flow
4.​ Character selection (intern only for MVP)

Phase 2: Email System (Day 2)

1.​ Inbox display with 4 emails
2.​ Dynamic email generation on click
3.​ AI integration for each character
4.​ Scrollable email reader

Phase 3: Mini-Games (Day 3-4)

1.​ Banana game (simplest)
2.​ Sniper game (if time)
3.​ Golf game (stretch goal)
4.​ Intentional bugs for each

Phase 4: Email Assembly (Day 5)

1.​ Combine inputs from all interactions
2.​ Generate final email
3.​ Send to user's real email
4.​ Optional: Reply triggers NFT

Phase 5: SAD Economy (Post-MVP)

1.​ SADCoin integration
2.​ FEELS generation from gameplay
3.​ Staking mechanism
4.​ Cross-chain via CCIP

Key Technical Decisions

Why Next.js?

●​ Server-side rendering for SEO (letswritean.email)
●​ API routes for LLM calls
●​ Easy deployment to Vercel
●​ TypeScript for type safety

Why Multiple LLMs?

●​ Creates personality differences
●​ Cost optimization (monkey = cheap)
●​ Comedic effect from quality variance
●​ AWS Bedrock provides easy access

Why Intentionally Buggy?

●​ We don’t have time to make it perfect
●​ Creates frustration → productivity loop
●​ Authentic "sad" experience
●​ Makes email writing seem appealing
●​ Memorable user experience

Team Responsibilities

Tippi (Product/Integration)

●​ AI prompt engineering
●​ Chainlink integration research
●​ Documentation and team coordination
●​ Playtesting and feedback

Jason (Creative/Design)

●​ Game design and flow
●​ Asset creation
●​ Dialogue and humor writing
●​ Visual language consistency

Crome/Vasiliy (Backend/Architecture)

●​ Smart contract development
●​ Backend architecture
●​ Reluctant frontend assistance
●​ Code quality (intentionally variable)

Will (Frontend/Music?)

●​ UI implementation
●​ Email system integration
●​ Potential: Sad piano soundtrack
●​ Good Rabbit experience applicable

Eman (Smart Contracts)?

●​ SAD coin contract
●​ FEELS token mechanics
●​ Cross-chain architecture
●​ Staking implementation

Critical Path Items
1.​ Terminal UI with basic navigation (blocks everything)
2.​ Email generation with AI (core feature)
3.​ At least ONE mini-game (proves concept)
4.​ Email delivery system (completes loop)
5.​ Basic wallet integration (for Web3 requirement)

Stretch Goals
●​ All three mini-games
●​ Full SAD/FEELS economy
●​ Cross-chain support
●​ Leaderboard system
●​ Chat room at water cooler
●​ Custom sad music soundtrack

	`Let's Write An Email - Technical Implementation Guide
	Architecture Overview
	Frontend Stack
	Backend Services
	Web3 Integration (Post-MVP but Pre-Hackathon Deadline)

	Component Breakdown
	1. Terminal Container (/components/Terminal)
	2. Game State Manager (/components/GameStateManager)
	3. Email System (/components/EmailSystem)
	4. Mini-Games (Intentionally Buggy)
	Banana Game (/games/BananaGame)
	Sniper Game (/games/SniperGame)
	Golf Game (/games/GolfGame)

	AI Prompt Architecture
	Base System Context
	Character Prompts
	Officer
	Agent
	Monkey

	Implementation Phases
	Phase 1: Core Terminal UI (Day 1)
	Phase 2: Email System (Day 2)
	Phase 3: Mini-Games (Day 3-4)
	Phase 4: Email Assembly (Day 5)
	Phase 5: SAD Economy (Post-MVP)

	Key Technical Decisions
	Why Next.js?
	Why Multiple LLMs?
	Why Intentionally Buggy?

	Team Responsibilities
	Tippi (Product/Integration)
	Jason (Creative/Design)
	Crome/Vasiliy (Backend/Architecture)
	Will (Frontend/Music?)
	Eman (Smart Contracts)?

	Critical Path Items
	Stretch Goals

