
Wallet Encryption and Backup Mechanism

Name and Contact Information

●​ NAME: ARUNABHA DHAL
●​ EMAIL ID: arunabhadhal04@gmail.com
●​ DISCORD: Tukan003
●​ UNIVERSITY: INDIAN INSTITUTE OF TECHNOLOGY INDORE
●​ COUNTRY: INDIA
●​ GITHUB: https://github.com/arunabha003
●​ LINKEDIN: https://www.linkedin.com/in/arunabha-dhal-23189624b/

Synopsis:

This project aims to implement robust wallet encryption and backup features for the Coinswap protocol,
addressing critical security and usability gaps. Currently, Coinswap wallets are stored in plaintext, making them
vulnerable to compromise. Additionally, the absence of automated backups puts users at risk of losing funds
due to file corruption or disk failure.

To solve this, the project introduces AES-256-GCM encryption with PBKDF2-HMAC-SHA256-based password
protection for both maker and taker wallets. It also adds local encrypted backups triggered automatically on
shutdown and manually via CLI. Optional cloud backups to a versioned AWS S3 bucket will provide off-site
recovery, with setup automated via Terraform. CLI commands for backup and restore will be integrated into
maker-cli and taker, alongside secure password prompts and overwrite safeguards.

Project Plan:

1. Introduction and Motivation

This project proposes to integrate strong, password-based encryption for both maker and taker wallets, along
with secure local and optional cloud backup features. The goal is to ensure that wallets remain private and
recoverable, even in adverse scenarios—strengthening both the security and usability of the Coinswap
ecosystem.

2. AES-256-GCM Wallet Encryption (PBKDF2-HMAC-SHA256)
Goal: Ensure only someone with the correct password can read the wallet file. We’ll derive a 256-bit key from
a user password and salt (using PBKDF2-HMAC-SHA256), then encrypt the wallet data with AES-256-GCM.

Implementation Plan: We will integrate encryption into the wallet creation and loading process as follows:

https://github.com/arunabha003
https://www.linkedin.com/in/arunabha-dhal-23189624b/

1.Password Setup:​
During initial wallet creation, prompt the user (or read from config) for a wallet password. For makerd, this
occurs on startup if no encrypted wallet exists; for taker, on first CLI use.If no password is provided(empty
string), wallet data remains unencrypted for backward compatibility. The password is not stored in plaintext
anywhere; it’s only used to derive the encryption key.

2.Key Derivation:

●​ Generate a 16-byte random salt for each wallet and store that salt alongside the encrypted wallet data
on disk. .

●​ We will use PBKDF2-HMAC-SHA256 with a high iteration count (100k iterations of SHA256 is fast
enough to keep wallet load under a couple of seconds) to derive the 256-bit key from the user’s
password and salt.

●​ The derived key is used for AES-256-GCM encryption/decryption.​

3.Encryption on Save:

●​ Whenever the wallet is serialized to disk (e.g. on shutdown or state save),the wallet plaintext is then
encrypted with AES-GCM using a 12-byte IV (nonce), producing ciphertext and an authentication tag,
which are stored to the wallet file.

●​ The output file format will contain a simple header (magic bytes like COINSWAP for identification), the
salt, the IV, and the ciphertext+tag. For example, the file layout might be: [MAGIC | salt(16) |
iv(12) | ciphertext+tag]

4.Decryption on Load:

●​ When loading the wallet (at makerd startup or when the taker cli used), require the user’s password to
decrypt.

●​ The code will read the header to detect if the wallet is encrypted.If so, it reads the salt and IV from the
file, runs PBKDF2 to regenerate the key, then decrypts the ciphertext using AES-256-GCM.

●​ We will prompt for password, run PBKDF2, decrypt via AES-256-GCM. If the password is wrong,
loading fails, error shown to the user.

●​ If the wallet file is not encrypted (legacy/plaintext), the code will load it as it currently does​

5.In-Memory Handling:​
Once decrypted, sensitive wallet data like private keys will stay in memory until the app exits. We'll handle this
carefully—zeroing out buffers (using crates like zeroize) as soon as they’re no longer needed. Rust’s
ownership model helps here by keeping secret data tightly scoped.

Code Implementation:

●​ src/wallet/encryption.rs: Implements AES-GCM + PBKDF2 encryption and decryption.

use aes_gcm::{Aes256Gcm, KeyInit, Nonce}; // AES-GCM with 256-bit key​
use aes_gcm::aead::{Aead, Payload};​
use pbkdf2::pbkdf2_hmac;​
use rand::{RngCore, rngs::OsRng};​
use sha2::Sha256;​
use zeroize::Zeroize;​
​
const SALT_LEN: usize = 16;​

const IV_LEN: usize = 12;​
const KEY_LEN: usize = 32;​
const HEADER_MAGIC: &[u8; 8] = b"CSWALLET";​
const PBKDF2_ITERATIONS: u32 = 100_000;​
​
/// Format: [MAGIC (8 bytes)] [salt (16)] [iv (12)] [ciphertext + tag]​
pub fn encrypt_wallet(plaintext: &[u8], password: &str) -> Result<Vec<u8>, String> {​
 let mut salt = [0u8; SALT_LEN];​
 OsRng.fill_bytes(&mut salt);​
​
 let key = derive_key(password, &salt);​
 let cipher = Aes256Gcm::new(&key.into());​
​
 let mut iv = [0u8; IV_LEN];​
 OsRng.fill_bytes(&mut iv);​
​
 let nonce = Nonce::from_slice(&iv);​
 let encrypted = cipher​
 .encrypt(nonce, Payload { msg: plaintext, aad: &salt })​
 .map_err(|_| "Encryption failed")?;​
​
 let mut output = Vec::new();​
 output.extend_from_slice(HEADER_MAGIC);​
 output.extend_from_slice(&salt);​
 output.extend_from_slice(&iv);​
 output.extend_from_slice(&encrypted);​
​
 Ok(output)​
}​
​
pub fn decrypt_wallet(data: &[u8], password: &str) -> Result<Vec<u8>, String> {​
 if data.len() < HEADER_MAGIC.len() + SALT_LEN + IV_LEN {​
 return Err("Encrypted wallet format too short".into());​
 }​
 let (magic, rest) = data.split_at(8);​
 if magic != HEADER_MAGIC {​
 return Err("Wallet file is not encrypted".into());​
 }​
 let (salt, rest) = rest.split_at(SALT_LEN);​
 let (iv, ciphertext) = rest.split_at(IV_LEN);​
 let key = derive_key(password, salt);​
 let cipher = Aes256Gcm::new(&key.into());​
 let nonce = Nonce::from_slice(iv);​
 cipher​
 .decrypt(nonce, Payload { msg: ciphertext, aad: salt })​
 .map_err(|_| "Decryption failed, wrong password or corrupted data".into())​
}​
pub fn is_encrypted_wallet(data: &[u8]) -> bool {​
 data.starts_with(HEADER_MAGIC)​
}​
fn derive_key(password: &str, salt: &[u8]) -> [u8; KEY_LEN] {​

 let mut key = [0u8; KEY_LEN];​
 pbkdf2_hmac::<Sha256>(​
 password.as_bytes(),​
 salt,​
 PBKDF2_ITERATIONS,​
 &mut key,​
);​
 key​
}​
/// Generate a random salt​
pub fn generate_salt() -> [u8; SALT_LEN] {​
 let mut salt = [0u8; SALT_LEN];​
 OsRng.fill_bytes(&mut salt);​
 salt​
}​
/// Generate a random IV for AES-GCM​
pub fn generate_iv() -> [u8; IV_LEN] {​
 let mut iv = [0u8; IV_LEN];​
 OsRng.fill_bytes(&mut iv);​
 iv​
}

●​ src/wallet/api.rs: Wraps wallet save/load with encrypt/decrypt; detects encrypted headers.

pub fn save_wallet(​
 path: &Path,​
 wallet: &Wallet,​
 password: Option<&str>,​
) -> Result<(), WalletError> {​
 // serialize → if Some(password) then derive_key+encrypt → write file​
 ...​
}​
pub fn load_wallet(​
 path: &Path,​
 password: Option<&str>,​
) -> Result<Wallet, WalletError> {​
 // read header → if encrypted then derive_key+decrypt → deserialize​
 ...​
}

3. Local Encrypted Backup and Restore
Goal: Provide a safe way to back up the encrypted wallet file, preventing data loss if the main file is corrupted
or deleted.

1.Automatic Backup on Shutdown:​
For the maker, when maker-cli stop is called, makerd finalizes the wallet and copies the encrypted wallet
to a backup path (e.g. ~/.coinswap/maker/wallets/backup/)

2.Manual Backup via CLI:​
We will add a CLI subcommand to both maker-cli and taker for manual backups. For example,
maker-cli backup will instruct the running makerd to flush the current wallet state (if not already) and copy
the wallet file to the backup location. Internally, this could be implemented as a new RPC call in the maker
daemon (e.g. a backup command) . On the taker side, running taker backup will simply perform the
backup operation (since the taker process can directly read its wallet file).

3.Performing the copy:

Performing the backup is simple—we’ll copy the encrypted wallet file byte-for-byte to the backup path. Since
it’s already encrypted, no extra encryption is needed. We’ll fsync the file to ensure it's fully written. Backups
might be named wallet.bak or include a timestamp like wallet-backup-2025-07-01T15-30-00.dat.

4.Local Restore:

To restore from a local backup, we will provide a CLI command such as maker-cli restore --file
<path> and taker restore --file <path>. This command will not automatically overwrite the current
wallet without confirmation.The tool will load the backup file, attempt to decrypt it with the user’s password
(prompting if not provided), and if successful, replace the current wallet file with the decrypted data.

Code Implementation:

●​ src/bin/makerd.rs: Adds RPC handlers for backup/restore; triggers auto-backup on shutdown.

fn handle_shutdown() {​
 // on SIGTERM: call backup_wallet()​
 ...​
}​
rpc! {​
 /// Copies encrypted wallet to ~/.coinswap/.../backup/​
 fn backup_wallet() -> Result<(), RpcError> { ... }​
 /// Restores from given file (decrypts with password, replaces current)​
 fn restore_wallet(file: String, password: Option<String>) -> Result<(), RpcError> { ... }​
}

4. Cloud Backup with AWS S3
Goal: Provide an off-site backup to mitigate local disk failures. Even if the user’s entire machine fails, an
S3-stored backup can be retrieved.

1.AWS S3 Bucket Setup:​
We’ll assume the user sets up an S3 bucket for cloud backups, with s3_bucket_name and s3_region set in
the Coinswap config. Our Terraform script will ensure versioning is enabled. Backups will be stored under a
fixed key like maker-wallet.bak (or with a user ID if needed). With versioning on, each upload creates a
new version—no need to change the filename each time.

2.Credentials and Security:​
We won’t hardcode credentials. The AWS SDK will use standard methods—env vars, config files, or IAM roles.
Users must have the right permissions (s3:PutObject, s3:GetObject, etc.). Everything goes over HTTPS,
and since the file is encrypted before upload, data stays secure end-to-end.

3.Uploading Backup:​
If cloud backup is enabled (enable_cloud_backup=true), the app will upload the encrypted backup after

local copy is saved. For the maker, makerd will handle this (either async or at shutdown). For the taker, it’ll
happen during the CLI command. We’ll use AWS SDK’s async API to stream the file and call PutObject.

4.Restore from S3:​
We may add a --from-s3 restore command later (maker-cli restore --from-s3, etc.). It would fetch
the latest (or a specified version) using GetObject, save it temporarily, and run the usual restore logic. ​

Code Implementation:
●​ src/cloud.rs: is an helper module that handles uploading encrypted wallet backups to AWS S3 using the

Rust AWS SDK.()

pub async fn upload_backup_s3(​
 bucket: &str,​
 key: &str,​
 file: &Path,​
) -> Result<(), S3Error> {​
 // aws_sdk_s3::Client::put_object → await​
 ...​
}​
pub async fn download_backup_s3(​
 bucket: &str,​
 key: &str,​
 dest: &Path,​
) -> Result<(), S3Error> {​
 // aws_sdk_s3::Client::get_object → save to dest​
 ...​
}

5. Terraform for AWS S3 Provisioning (Versioned Buckets)
To aid users setting up the S3 infrastructure correctly, we will provide a Terraform configuration for creating the
backup bucket with best practices. This ensures that even non-expert users can easily get a properly
configured environment for cloud backups.It will be included that:

●​ Creates an S3 bucket with versioning enabled.
●​ Allows a user to run terraform init && terraform apply

-var="bucket_name=my-bucket" to get a preconfigured environment.
●​ (Optionally) defines a minimal IAM policy that grants only PutObject/GetObject for a dedicated

backup user.​

Code Implementation:

●​ infra/terraform/coinswap_backup_bucket.tf: Creates versioned AWS S3 backup bucket.()

resource "aws_s3_bucket" "coinswap_backup" {​
 bucket = var.bucket_name​
 acl = "private"​
​

 versioning {​
 enabled = true​
 }

6. CLI and Configuration Additions

Configuration File Changes

We’ll introduce or extend a [wallet] or [backup] section in config.toml(both
~/.coinswap/maker/config.toml and ~/.coinswap/taker/config.toml):

[wallet]​
encrypt_wallet = true​
​
[backup]​
backup_path = "/home/user/coinswap_backups/"​
enable_cloud_backup = true​
s3_bucket_name = "my-coinswap-bucket"​
s3_region = "us-west-2"

CLI Extensions:
We’ll extend both maker-cli and taker with new commands and flags using the existing clap setup.

Password Prompt: If encrypt_wallet=true, the user will be prompted for a password at startup. In
makerd, this happens on the console (if interactive), or uses --wallet-password / env var if provided. In
taker, the prompt will appear on every run unless overridden by a flag or env. We'll use something like the
rpassword crate to hide input securely.​
Commands:

●​ maker-cli backup [--no-cloud] – triggers local backup, optionally skipping S3.
●​ maker-cli restore --file <path> – restores from local backup; must confirm overwrite.
●​ Potentially maker-cli restore --from-s3 [--version <id>].

Code Implementation:

●​ src/bin/maker-cli.rs: Adds backup and restore subcommands with user prompts. Interacts
with makerd over RPC. ()

●​ src/bin/taker.rs: Adds internal handlers for backup/restore. Direct wallet file access.()

let cmd = clap::Command::new("backup")​
 .about("local backup")​
 .arg("--no-cloud");​
let cmd2 = clap::Command::new("restore")​
 .arg("<file>")​
 .arg("--from-s3");​
match matches.subcommand() {​
 ("backup", sub) => { /* call backup_wallet or skip S3 */ }​
 ("restore", sub) => { /* call restore_wallet or fetch from S3 */ }​

 _ => {}​
}

7.Testing Plan:

1. Unit Tests:

 We'll validate the core encryption logic by testing AES-256-GCM and PBKDF2 key derivation. These tests will
ensure encrypted wallet data can be decrypted only with the correct password and that decryption fails with
the wrong one. This guarantees our cryptographic implementation is secure and behaves as expected.

Demo Code Implementation:

●​ src/wallet/encryption.rs – tests for key derivation and AES-GCM encryption/decryption.()

#[cfg(test)] ​
mod crypto_tests {​
 #[test]​
 fn test_key_derivation() {​
 // derive_key("pass", &salt) == expected_bytes​
 ...​
 }​
 #[test]​
 fn test_encrypt_decrypt_success() {​
 // let (ct, iv, tag) = encrypt_wallet(pl, &key);​
 // assert_eq!(decrypt_wallet(&ct, &key, &iv, &tag).unwrap(), pl);​
 ...​
 }​
 #[test]​
 fn test_decrypt_wrong_password() {​
 // decrypt_wallet with wrong key → Err​
 ...​
 }​
}

2. Integration Tests:

We'll simulate full backup and restore flows for both maker and taker. This includes creating an encrypted
wallet, performing a backup, corrupting the original, and verifying that restoration brings the wallet back to its
original state. Tests will also cover S3 upload triggers using mocks or a local emulator, ensuring cloud backup
integration is sound.

Demo Code Implementation:

●​ tests/backup_restore.rs – simulates end-to-end wallet backup and restore for maker and
taker.()

#[cfg(test)]​
mod backup_tests {​
 #[test]​

 fn test_local_backup_restore() {​
 // save encrypted wallet, corrupt orig, restore → matches original​
 ...​
 }​
 #[tokio::test]​
 async fn test_s3_backup_upload() {​
 // mock S3, upload_backup_s3 → verify call​
 ...​
 }​
}

3. CLI Tests:

We’ll test the new backup and restore subcommands using simulated CLI inputs to ensure correct parsing
and argument validation. These tests confirm that the commands behave reliably, provide clear error
messages, and integrate cleanly into the existing maker-cli and taker interfaces.​
​
Demo Code Implementation:

●​ tests/cli_backup_tests.rs – tests maker-cli and taker backup/restore commands via
subprocess calls.()

8.Flow Diagrams:
​
​

​

Project Timeline:

Weeks 0–1 (Community Bonding):​
 I’ll finalize the technical design with my mentor, explore the relevant Coinswap modules, and set up local and
AWS environments needed for development and testing.

Weeks 1–2 (Wallet Encryption):​
 Implement AES-256-GCM encryption with PBKDF2 password derivation. This includes prompting the user for
a password and modifying wallet load/save logic to support encrypted files.

Weeks 3–4 (Local Backup & Restore):​
 Add logic to back up the encrypted wallet locally, triggered on shutdown or via CLI (backup/restore
commands). Implement password-based restore with proper safety checks.

Weeks 5–6 (Cloud Backup with S3):​
 Integrate AWS S3 uploads using the Rust SDK and provide a Terraform script to set up a versioned S3
bucket. Ensure cloud backup works after local backup completes.

Week 6 (Midterm Evaluation):​
 By midterm, encryption, local backup/restore, and basic cloud integration will be complete and demo-ready.

Weeks 7–8 (CLI Enhancements):​
 Polish CLI UX: add flags like --wallet-password, confirmation prompts, and improve error handling.
Optionally support restore directly from S3.

Weeks 9–10 (Testing & Bug Fixes):​
 Write unit and integration tests for encryption, backup, and restore flows. Fix edge cases like corrupted files or
incorrect passwords.

Week 11 (Polish & Docs):​
 Finalize code quality, logs, memory zeroing, and write documentation with examples. Prepare demo materials.

Week 12 (Final Submission):​
 Submit the full implementation, final report, and assist with review or merge process.

Future Deliverables :

I want to work on the issues for v0.1.2. Also want to get done with the issue “Fee rate negotiation” as I’m
already working on it.

Benefits to Community :

This project makes Coinswap more secure and reliable by encrypting wallet files and adding automated
backups. It helps users safely run nodes without risking key loss or compromise. These changes make the
protocol more usable, especially for long-term makers and real-world adoption.

Biographical Information :

I’m a 3rd‑year undergrad at IIT Indore, and I’ve been actively working in the EVM ecosystem as a Solidity
developer and security researcher, with backend experience in JavaScript and Python, plus DevOps. I’ve
spent a lot of time in DeFi on EVM, and I’ve always wanted to explore its scope on the Bitcoin network. In the
past, I’ve worked with Ordinals and Runes, and I’m currently involved in a Bitcoin–TON bridging project.

When I looked into past SOB organizations, Coinswap immediately caught my eye. After running the demo, I
was hooked—I dove into the codebase and decided to contribute. I believe I’m an ideal candidate because I’m
genuinely committed to getting Coinswap production‑ready. I’ve worked with Move (a Rust‑like language)
before.Still I consider myself as a rust beginner, and on a continuous process of learning more. When I’m
stuck on a problem, I work for hours straight until I get it solved—something I think really sets me apart.​
​
To date, I’ve had two PRs merged into the Coinswap codebase and am currently working on another one.​
1.https://github.com/citadel-tech/coinswap/pull/455 (merged)​

2.https://github.com/citadel-tech/coinswap/pull/452 (merged)

https://github.com/citadel-tech/coinswap/pull/455
https://github.com/citadel-tech/coinswap/pull/452

3. https://github.com/citadel-tech/coinswap/pull/486 (open PR)

​

Competency Test:

1.Compiling the Coinswap project, and running all tests..

2. Setting up a local Bitcoin Core node in regtest mode. Creating a wallet, receiving funds,
and sending transactions using bitcoin-cli.

https://github.com/citadel-tech/coinswap/pull/486

3. Syncing a Testnet4 node locally. (as of 16th April, 16:04)

4.Successful Coinswap

	Wallet Encryption and Backup Mechanism
	Name and Contact Information
	Synopsis:
	Project Plan:
	1. Introduction and Motivation
	2. AES-256-GCM Wallet Encryption (PBKDF2-HMAC-SHA256)
	Code Implementation:

	3. Local Encrypted Backup and Restore
	Code Implementation:

	4. Cloud Backup with AWS S3
	Code Implementation:

	5. Terraform for AWS S3 Provisioning (Versioned Buckets)
	6. CLI and Configuration Additions
	Configuration File Changes
	CLI Extensions:
	Future Deliverables :
	Benefits to Community :
	This project makes Coinswap more secure and reliable by encrypting wallet files and adding automated backups. It helps users safely run nodes without risking key loss or compromise. These changes make the protocol more usable, especially for long-term makers and real-world adoption.
	I’m a 3rd‑year undergrad at IIT Indore, and I’ve been actively working in the EVM ecosystem as a Solidity developer and security researcher, with backend experience in JavaScript and Python, plus DevOps. I’ve spent a lot of time in DeFi on EVM, and I’ve always wanted to explore its scope on the Bitcoin network. In the past, I’ve worked with Ordinals and Runes, and I’m currently involved in a Bitcoin–TON bridging project.
	When I looked into past SOB organizations, Coinswap immediately caught my eye. After running the demo, I was hooked—I dove into the codebase and decided to contribute. I believe I’m an ideal candidate because I’m genuinely committed to getting Coinswap production‑ready. I’ve worked with Move (a Rust‑like language) before.Still I consider myself as a rust beginner, and on a continuous process of learning more. When I’m stuck on a problem, I work for hours straight until I get it solved—something I think really sets me apart.​​To date, I’ve had two PRs merged into the Coinswap codebase and am currently working on another one.​1.https://github.com/citadel-tech/coinswap/pull/455 (merged)​2.https://github.com/citadel-tech/coinswap/pull/452 (merged)
	​

