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At the end of the course students should be able to: 

CO1 Construct the mathematical model of mechanical and electrical systems and solve for 
the transfer functionAnalysis 

CO2 Develop the transfer function for a given control system by applying the knowledge 
of block diagram reduction techniques and signal flow graphs 

CO3 Determine the time domain specifications of first order and second order systems and 
discuss the operations of different controllers 

CO4 Analyze the stability of a given control system in time domain and frequency domain 
using relevant techniques 

CO5 Develop the state model of the given electrical/mechanical system using state variable 
analysis 

CO6 Analyze the stability of a system from the transfer function 

 
CO-PO Mapping: 

 

CO-PSO Mapping: 
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CO/PO'
S PO1 

PO
2 

PO
3 

PO
4 

PO
5 

PO
6 P07 

PO
8 

PO
9 

P01
0 

PO1
1 

PO1
2 

CO1 3 2     1 - - - 1 2 - 2 
CO2 2 3 3 1 1 - - - 1 2 - 2 
CO3 3 3 2 1 1 - - - 1 1 - 2 
CO4 3 3 2 1 1 1 1 - 1 1 - 2 
CO5 3 3 2   1 1 1 - 1 1 - 2 
CO6 3 3 2   1 1 1  1 1  1 

AVG 2.83 2.83 2.2 1 1 1 1 - 1 1.33 - 1.83 

CO/PSO'S PSO1 PSO2 
CO1 3 2 
CO2 2 2 
CO3 3 2 
CO4 3 1 
CO5 3 0 

CO6 
3 0 

AVG 2.833 1.16 
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What is Octave? 

Octave is an open-source interactive software system for numerical computations and graphics. It is 

particularly designed for matrix computations: solving simultaneous equations, computing eigenvectors 

and eigenvalues and so on. In many real-world engineering problems the data can be expressed as 

matrices and vectors, and boil down to these forms of solution. In addition, Octave can display data in a 

variety of different ways, and it also has its own programming language which allows the system to be 

extended. It can be thought of as a very powerful, programmable, graphical calculator. Octave makes it 

easy to solve a wide range of numerical problems, allowing you to spend more time experimenting and 

thinking about the wider problem. 

Octave was originally developed as a companion software to a undergraduate course book on chemical 

reactor design. It is currently being developed under the leadership of Dr. J.W. Eaton and released under 

the GNU General Public License. Octave's usefulness is enhanced in that it is mostly syntax compatible 

with MATLAB which is commonly used in industry and academia. 

 

Who uses Octave? 

Octave and MATLAB are widely used by engineers and scientists, in both industry and academia for 

performing numerical computations, and for developing and testing mathematical algorithms. For 

example, NASA use it to develop spacecraft docking systems; Jaguar Racing use it to display and analyse 

data transmitted from their Formula 1 cars; Sheffield University use it to develop software to recognise 

cancerous cells. It makes it very easy to write mathematical programs quickly, and display data in a wide 

range of different ways. 
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Starting Octave 

 

 

 

 

 

 

 

 

Octave as a calculator 
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The simplest way to use Octave is just to type mathematical commands at the prompt, like a normal 

calculator. All of the usual arithmetic expressions are recognised. For example, type 

octave:##> 2+2 

at the prompt and press return, and you should see 

ans = 4 

The basic arithmetic operators are + - * /, and ^ is used to mean `to the power of' (e.g. 2^3=8). 

Brackets ( ) can also be used. The order precedence is the same usual i.e. brackets are evaluated first, then 

powers, then multiplication and division, and finally addition and subtraction. Try a few examples. 

Built-in functions 

As well as the basic operators, Octave provides all of the usual mathematical functions, and a selection of 

these can be seen in the Table. These functions are invoked as in C++ with the name of the function and 

then the function argument (or arguments) in ordinary brackets (), for example (A function's arguments 

are the values which are passed to the function which it uses to calculate its response. In this example the 

argument is the value `1', so the exponent function calculates the exponential of 1 and returns the value 

(i.e. e1) = 2.7183).) 

octave:##> exp(1) 

ans = 2.7183 

Here is a longer expression: to calculate 1.2*sin(40o + ln(2.42)), type 

octave:##> 1.2 * sin(40*pi/180 + log(2.4^2)) 

ans = 0.76618 

There are several things to note here: 

An explicit multiplication sign is always needed in equations, for example between the 1.2 and sin. 

The trigonometric functions (for example sin) work in radians. The factor pi/180 can be used to convert 

degrees to radians. pi is an example of a named variable, discussed in the next section. 

The function for a natural logarithm is called `log', not `ln'. 
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Named variables 
In any significant calculation you are going to want to store your answers, or reuse values, just like using 

the memory on a calculator. Octave allows you to define and use named variables. For example, consider 

the degrees example in the previous section. We can define a variable deg to hold the conversion factor, 

writing 

octave:##> deg = pi/180 

deg =0.017453 

Note that the type of the variable does not need to be defined, unlike most high level languages e.g. in 

C++. All variables in Octave are floating point numbers. (Or strings, but those are obvious from the 

context. However, even strings are stored as a vector of character ID numbers.) Using this variable, we 

can rewrite the earlier expression as 

octave:##> 1.2 * sin(40*deg + log(2.4^2)) 
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ans =0.76618 

You will have already have seen another example of a variable in Octave. Every time you type in an 
expression which is not assigned to a variable, such as in the most recent example, Octave assigns the 
answer to a variable called ans. This can then be used in exactly the same way: 

octave:##> new = 3*ans 

new =2.2985 

Getting help 

If you are not sure what a particular Octave command does, or want to find a particular function, Octave 

contains an integrated help system. The basic form of using help is to type 

help commandname 

For example: 

octave:1> help sqrt 

sqrt is a built-in function 

 - Mapping Function:  sqrt (X) 

     Compute the square root of X.  If X is negative, a complex  result is returned.  To compute the matrix 

square root, see *Note Linear Algebra::.Additional help for built-in functions, operators, and variables is 

available in the on-line version of the manual.  Use the command `doc ' to search the manual index. 

Help and information about Octave is also available on the WWW at http://www.octave.org and via the 

help@octave.org mailing list. 

Arrays and vectors 
 

There are lots of ways of defining vectors and matrices. Usually the easiest thing to do is to type the 
vector inside square brackets [], for example 

octave:##> a=[1 4 5] 

  a = 

    1     4     5 

octave:##> b=[2,1,0] 

  b = 

     2     1     0 
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octave:##> c=[4;7;10] 

c = 

   4 

   7 

  10 

A list of numbers separated by spaces or commas, inside square brackets, defines a row vector. 
Numbers separated by semicolons, or carriage returns, define a column vector. 

You can also construct a vector from an existing vector by including it in the definition, for example 

octave:##> a=[1 4 5] 

a = 

    1     4     5 

octave:##> d=[a 6] 

d = 

    1     4     5     6 

Plotting graphs 
 

Octave has powerful facilities for plotting graphs via a second open-source program GNUPLOT, however 
some of the range of plotting options are restricted compared with MATLAB. The basic command 
is plot(x,y), where x and y are the co-ordinates. If given just one pair of numbers it plots a point, but 
usually you pass vectors, and it plots all the points given by the two vectors, joining them up with straight 
lines.(The two vectors must, naturally, both be the same length.) The sine curve defined in the previous 
section can be plotted by typing 

octave:##> plot(angles,y) 

A new window should open up, displaying the graph, shown below. Note that it automatically selects a 
sensible scale, and plots the axes. 

10 
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Figure 1: Graph of y=sin(x), sampled every 60o 
 
At the moment it does not look particularly like a sine wave, because we have only taken values one 

every 60 degrees. To plot a more accurate graph, we need to calculate y at a higher resolution: 

octave:##> angles=linspace(0,2*pi,100);​
 
octave:##> y=sin(angles);​
 
octave:##> plot(angles, y); 

The linspace command creates a vector with 100 values evenly spaced between 0 and 2π (the value 100 is 

picked by trial and error). Try using these commands to re-plot the graph at this higher resolution. 

Remember that you can use the arrow keys to go back and reuse your previous commands. 

Improving the presentation 

You can select the colour and the line style for the graph by using a third argument in the plot command. 

For example, to plot the graph instead with red circles, type 

octave:##> plot(angles, y, 'ro') 

The last argument is a string which describes the desired styles. Table 3 shows the possible values (also 

available by typing help plot in Octave). 

 
 
Table 3: Colours and styles for symbols and lines in the plot command  
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octave:##> title('Graph of y=sin(x)') 
octave:##> xlabel('Angle') 
octave:##> ylabel('Value') 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Experiment – 1 
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Aim:   Implement Block diagram reduction technique to obtain transfer function a control system 

Problem 1: 

 

 

 

 

G1=1/s,   G4=1/(s+1)  ,  G2=s   , G3=1, H1=s, H2=1/s 

Code: 

% Implement Block diagram reduction technique -Program1 
pkg load control 
clc 
clf 
num1=[1] 
den1=[1 0]; 
tf1=tf(num1, den1) % transfer function 1/s 
num2=[1] 
den2=[1 1] 
tf2=tf(num2, den2) % transfer function 1/s+1 
num3=[1 0] 
den3=[1] 
tf3=tf(num3, den3)% transfer function s 
tf4=series(tf1, tf2) 
tf5=feedback(tf4,tf3) 
num3=[1 0] 
den3=[1] 
tf6=tf(num3, den3)% transfer function s 
tf7=parallel(tf6,1) 
tf8=series(tf5, tf7) 
num3=[1] 
den3=[1 0] 
tf9=tf(num3, den3)% transfer function 1/s 
tfinal=feedback(tf8,tf9) 

 
Output:  Transfer function 'tfinal' from input 'u1' to output ...  
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Experiment – 2 

Aim:   Implement Signal Flow graph to obtain transfer function a control system. 

 

 

 

 

 

 

% Signal Flow graph (Masons Gain Formula) 
pkg load control 
clc 
G1=1;    G2=2;    G3=3;    G4=4; 
H1=-5;    H2=-6;      H3=-7;   H4=-8; 
 
fp1=G1*G2*G3; 
fp2=G4; 
 
d1=1; 
d2=1+H1+H2+H1*H2; 
 
l1=H1; 
l2=H2; 
l3=G3*H4; 
l4=G2*G3*H3; 
 
ntl1=H1*H2; 
ntl2=H1*(G3*H4); 
 
num=( fp1*d1 + fp2*d2 ) 
d =1-(l1+l2+l3+l4)+(ntl1+ntl2) 
tf = num/d  
display(tf) 

Output 

num =  86 

d =  228 

tf =  0.37719 
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Experiment – 3 

Aim:  Simulation of poles and zeros of a transfer function. 

Code: 

pkg load control 
clf 
clc 
clear all 
% Plot poles and zeros 
 
 
 s = tf('s'); 
 g =(s-1)/(s-2); 
pzmap(g); 
figure 
 
g2=(s+1)/(s-2)/(s+3); 
 pzmap(g2); 
  
num1=[1 -3 2] 
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den1=[1 -7 12]; 
tf1=tf(num1, den1)  
 
figure 
 pzmap(tf1); 

 

 

 

 

 

 

   

 

 

Experiment – 4 

Aim:   Implement time response specification 

of a second order Under damped System, for different damping factors. 

Code: 

pkg load control 
clc 
 
 s = tf('s'); 
sys =36/(s^2+6*s+36); 
 
t = 0:0.001:6; 
[y, t] = step(sys, t); 
plot(t, y); 
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Maximum overshoot: 
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Experiment – 5 

Aim:    Implement frequency response of a second order System. 

Code 

pkg load control 
clc 
 
% Define system parameters 
omega_n = 10;  % Natural frequency 
zeta = 0.1;    % Damping ratio 
 
% Excitation frequency ratio 
beta = linspace(0, 2, 100);  % Vary beta from 0 to 2 
X_over_U = 1 ./ sqrt((1 - beta.^2).^2 + (2*zeta*beta).^2); 
phi = atan2(-2*zeta*beta, 1 - beta.^2); 
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% Plot magnitude ratio 
subplot(2, 1, 1); 
semilogy(beta, X_over_U, 'b'); 
xlabel('\beta'); 
ylabel('|X(\omega)| / |U|'); 
title('Magnitude Ratio'); 
 
% Plot phase angle 
subplot(2, 1, 2); 
plot(beta, phi, 'r'); 
xlabel('\beta'); 
ylabel('\phi(\omega)'); 
title('Phase Angle'); 
 
% Adjust plot appearance 
sgtitle('Frequency Response of Second-Order System'); 

 

Output: 

 

 

 

 

 

Experiment – 6 

Aim:     Analyze the stability of the given system 

using Routh stability criterion. 

Code:      

pkg load control 
clc 
% Taking coefficients vector and organizing the first two rows 
coeffVector = input('input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] = '); 
ceoffLength = length(coeffVector); 
rhTableColumn = round(ceoffLength/2); 
%  Initialize Routh-Hurwitz table with empty zero array 
rhTable = zeros(ceoffLength,rhTableColumn); 
%  Compute first row of the table 
rhTable(1,:) = coeffVector(1,1:2:ceoffLength); 
%  Check if length of coefficients vector is even or odd 
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if (rem(ceoffLength,2) ~= 0) 
    % if odd, second row of table will be 
    rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength); 
else 
    % if even, second row of table will be 
    rhTable(2,:) = coeffVector(1,2:2:ceoffLength); 
end 
%% Calculate Routh-Hurwitz table's rows 
%  Set epss as a small value 
epss = 0.01; 
%  Calculate other elements of the table 
for i = 3:ceoffLength 
    
    %  special case: row of all zeros 
    if rhTable(i-1,:) == 0 
        order = (ceoffLength - i); 
        cnt1 = 0; 
        cnt2 = 1; 
        for j = 1:rhTableColumn - 1 
            rhTable(i-1,j) = (order - cnt1) * rhTable(i-2,cnt2); 
            cnt2 = cnt2 + 1; 
            cnt1 = cnt1 + 2; 
        end 
    end 
 
     
    for j = 1:rhTableColumn - 1 
        %  first element of upper row 
        firstElemUpperRow = rhTable(i-1,1); 
         
        %  compute each element of the table 
        rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1)) - .... 
            (rhTable(i-2,1) * rhTable(i-1,j+1))) / firstElemUpperRow; 
    end 
     
     
    %  special case: zero in the first column 
    if rhTable(i,1) == 0 
        rhTable(i,1) = epss; 
    end 
end 
%%  Compute number of right hand side poles(unstable poles) 
%   Initialize unstable poles with zero 
unstablePoles = 0; 
%   Check change in signs 
for i = 1:ceoffLength - 1 
    if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1 
        unstablePoles = unstablePoles + 1; 
    end 
end 
%   Print calculated data on screen 

20 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

fprintf('\n Routh-Hurwitz Table:\n') 
rhTable 
%   Print the stability result on screen 
if unstablePoles == 0 
    fprintf('~~~~~> it is a stable system! <~~~~~\n') 
else 
    fprintf('~~~~~> it is an unstable system! <~~~~~\n') 
end 
    fprintf('\n Number of right hand side poles =%2.0f\n',unstablePoles) 
​   
Output: 
 
input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] = [1 2 3 4 5 6] 
 
 Routh-Hurwitz Table: 
rhTable = 
 
     1.00000     3.00000     5.00000 
     2.00000     4.00000     6.00000 
     1.00000     2.00000     0.00000 
     0.01000     6.00000     0.00000 
  -598.00000     0.00000     0.00000 
     6.00000     0.00000     0.00000 
 
~~~~~> it is an unstable system! <~~~~~ 
Number of right hand side poles = 2​  
 
​ ​ ​ ​  
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Experiment – 7 
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Aim:     Analyze the stability of the given system using Root locus 

Code 1:  

pkg load control 
clc 
%sys = tf([2 5 1],[1 2 3]); 
 s = tf('s'); 
 g =1/(s-0); 
 sys = tf(g); 
rlocus(sys) 

 

 

​ ​ ​  

 

 

 

 

 

​  

 

 

 

 

 

 

 

 

 

 

Code 2: 
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pkg load control 
clc 
s = tf('s'); 
g =(s+2)/(s^2+2*s+2)/(s^3+3*s^2); 
sys = tf(g); 
rlocus(sys) 

 

 

 

 

 

 

 

 

   

 

Code 3: 
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pkg load control 
clc 
s = tf('s'); 
 g =(s+6)/(s+2)/(s^2+4*s); 
 sys = tf(g); 
rlocus(sys) 
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Code 4: 

pkg load control 
clc 
%sys = tf([2 5 1],[1 2 3]); 
 s = tf('s'); 
g =10/(s^2+2*s)/(s^2+6*s+25); 
 sys = tf(g); 
rlocus(sys) 
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Experiment – 8 
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Aim:     Analyze the stability of the given system using Bode plots. 

Code 1: 
 

pkg load control 
clc 
 
% Define the transfer function 
s = tf('s'); 
g = 80/(s^2+2*s)/(s+20); 
% Specify the frequency range (1 Hz to 10^4 Hz) 
freq_range = {1, 10^4}; 
 
% Compute the Bode plot 
[bmag, bphase, bfreq] = bode(g, freq_range); 
 
% Convert frequency from rad/s to Hz 
bfreq_hz = bfreq / (2 * pi); 
 
% Plot the magnitude response 
subplot(2, 1, 1); 
semilogx(bfreq_hz, 20 * log10(bmag)); 
grid on; 
title('Bode Plot'); 
ylabel('Magnitude (dB)'); 
 
% Plot the phase response 
subplot(2, 1, 2); 
semilogx(bfreq_hz, bphase); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
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Experiment – 9 
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Aim:     Implement frequency response of a lead lag compensator. 

Theory: A lead-lag compensator is a component in a control system that combines a lead compensator 

and a lag compensator to improve a system's frequency response. It's a fundamental building block in 

classical control theory and is used in a variety of disciplines, including robotics, satellite control, and 

automobile diagnostics. 

A lag lead compensator is a type of electrical network that generates phase lag as well as phase lead in the 

output signal at different frequencies when a steady-state sinusoidal input is provided to it. It is also 

known as lag lead network. 

In case of a lag lead compensator, the phase lead and phase lag occur at different frequency regions. 

Generally, at low-frequency phase lag characteristics is noticed in the output of the circuit. While at high 

frequency, we have phase lead characteristics. 

 

 

 

 

 

 

A lead-lag compensator combines the effects of a lead compensator with those of a lag compensator. The 

result is a system with improved transient response, stability, and steady-state error. To implement a 

lead-lag compensator, first design the lead compensator to achieve the desired transient response and 

stability, and then design a lag compensator to improve the steady-state response of the lead-compensated 

system. 
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Code : 

pkg load control 
clc 
 
% Define the transfer function 
num1=[2 3 1] 
den1=[2 4.5 1]; 
g=tf(num1, den1) 
% Specify the frequency range (1 Hz to 10^4 Hz) 
freq_range = {1, 10^4}; 
 
% Compute the Bode plot 
[bmag, bphase, bfreq] = bode(g, freq_range); 
 
% Convert frequency from rad/s to Hz 
bfreq_hz = bfreq / (2 * pi); 
 
% Plot the magnitude response 
subplot(2, 1, 1); 
semilogx(bfreq_hz, 20 * log10(bmag)); 
grid on; 
title('Bode Plot'); 
ylabel('Magnitude (dB)'); 
 
% Plot the phase response 
subplot(2, 1, 2); 
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semilogx(bfreq_hz, bphase); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
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Experiment – 10 

Aim:  Analyze the stability of the given system using Nyquist plot. 

Code:  

pkg load control 
clc 
 
% Define the transfer function 
num1=[240] 
den1=[1 12 20 1]; 
g=tf(num1, den1) 
nyquist(g) 
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Experiment – 11 

Aim:  Obtain the time response from state model of a system 

Code:  

pkg load control 
clc 
A = [-0.5 -0.5;0.333 0]; 
B = [0.5;0]; 
C = [0 1]; 
D = 0; 
sys = ss(A,B,C,D); 
step(sys) 

 

Output: 

                                                                                                     

sys.a = 
          x1     x2 
   x1   -0.5   -0.5 
   x2  0.333      0 
 
sys.b = 
        u1 
   x1  0.5 
   x2    0 
 
sys.c = 
       x1  x2 
   y1   0   1 
 
sys.d = 
       u1  
   y1   0 
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Experiment – 12 

Aim:  Implement PI and PD Controllers 

 

Code:   

pkg load control 
clf 
clc 
clear all 
kp=20; 
ki=50 
num1=[kp, ki]; 
den1=[1 0]; 
controller_tf = tf (num1, den1); 
num2=1; 
den2=[1 20 30]; 
plant_tf=tf(num2, den2); 
overall_tf=feedback(controller_tf*plant_tf, 1); 
t=0:0.01:2; 
step (overall_tf, t); 
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Code: 

pkg load control 
clf 
clc 
clear all 
kp=300; 
kd=10 
num1=[kd, kp]; 
den1=1; 
controller_tf = tf (num1, den1); 
num2=1; 
den2=[1 20 30]; 
plant_tf=tf(num2, den2); 
overall_tf=feedback(controller_tf*plant_tf, 
1); 
t=0:0.01:2; 
step (overall_tf, t); 
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Q-1 What is frequency response?  

Ans:  A frequency response is the steady state response of a system when the input to the system 
is a sinusoidal signal.  

Q-2 List out the different frequency domain specifications?  

Ans:  The frequency domain specification are 1. Resonant peak. 2. Resonant frequency.  

Q-3 Define –resonant Peak? 

Ans: The maximum value of the magnitude of closed loop transfer function is called resonant 
peak.  

Q-4 Define –Resonant frequency?  

Ans: The frequency at which resonant peak occurs is called resonant frequency.  

Q-5 What is bandwidth?  

Ans: The bandwidth is the range of frequencies for which the system gain Is more than 3 dbB. 
The bandwidth is a measure of the ability of a feedback system to reproduce the input signal, 
noise rejection characteristics and rise time. 

 Q-6 Define Cut-off rate? 

 Ans: The slope of the log-magnitude curve near the cut-off is called cut-off rate. The cutoff rate 
indicates the ability to distinguish the signal from noise.  

Q-7 Define – Gain Margin? 

 Ans: The gain margin is defined as the reciprocal of the magnitude of the open loop transfer 
function at phase cross over frequency.  

Q-8 Define Phase cross over?  

Ans :The frequency at which, the phase of open loop transfer functions is called phase cross over 
frequency ωpc.  

Q-9 What is phase margin?  

Ans : The phase margin is the amount of phase lag at the gain cross over frequency required to 
bring system to the verge of instability. 
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 Q-10 What are the main significances of root locus?  

Ans: 

1. The main root locus technique is used for stability analysis.  

2. Using root locus technique the range of values of K, for as table system can be determined 

 Q-11 Define Gain cross over?  

Ans :The gain cross over frequency ωgc is the frequency at which the magnitude of the open 
loop transfer function is unity. 

Q-12 What is Bode plot?  

Ans: The Bode plot is the frequency response plot of the transfer function of a system. A Bode 
plot consists of two graphs. One is the plot of magnitude of sinusoidal transfer function versus 
log ω. The other is a plot of the phase angle of a sinusoidal function versus log ω.  

Q-13 What are the main advantages of Bode plot? 

 Ans: The main advantages are:  

1. Multiplication of magnitude can be in to addition.  

2. A simple method for sketching an approximate log curve is available.  

3. It is based on asymptotic approximation. Such approximation is sufficient if rough information 
on the frequency response characteristic is needed. 

 

Q-14 Define Corner frequency?  

Ans The frequency at which the two asymptotic meet in a magnitude plot is called corner 
frequency. Q- 

15 Define Phase lag and phase lead?  

Ans A negative phase angle is called phase lag. A positive phase angle is called phase lead.  

Q-16 What are M circles? 

 Ans The magnitude of closed loop transfer function with unit feedback can be shown to be in 
the for every value if M. These circles are called M circles.  
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Q-17 What is Nichols chart? 

 Ans The chart consisting if M & N loci in the log magnitude versus phase diagram is called 
Nichols chart.  

 

Q-18 What are two contours of Nichols chart?  

Ans :Nichols chart of M and N contours, superimposed on ordinary graph. The M contours are 
the magnitude of closed loop system in decibels and the N contours are the phase angle locus of 
closed loop system. 

 Q-19 How is the Resonant Peak(Mr), resonant frequency(ωr) , and band width determined 
from Nichols chart?  

Ans :1. The resonant peak is given by the value of contour which is tangent to G(jω) locus. 

 2. The resonant frequency is given by the frequency of G(jω) at the tangency point. 3. iii) The 
bandwidth is given by frequency corresponding to the intersection point of G(jω) and –3dB 
M-contour. 

Q-20 What are the advantages of Nichols chart?  

Ans: The advantages are: 1. It is used to find the closed loop frequency response from open loop 
frequency response. 2. Frequency domain specifications can be determined from Nichols chart. 
3. The gain of the system can be adjusted to satisfy the given specification. 

 Q-21:What are the two types of compensation?  

Ans :1. Cascade or series compensation 2. Feedback compensation or parallel compensation  

Q-22 What are the three types of compensators?  

Ans: 1. Lag compensator 2. Lead compensator 3. Lag-Lead compensator  

Q-23 What are the uses of lead compensator? 

 Ans: 1. speeds up the transient response 2. increases the margin of stability of a system 3. 
Increases the system error constant to a limited extent.  

 

 

Q-24 What is the use of lag compensator? 
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 Ans: Improve the steady state behaviour of a system, while nearly preserving its transient 
response. 

Q-25 What are the basic elements used for modelling mechanical rotational system?  

Ans: Moment of inertia J, dashpot with rotational frictional coefficient B and torsional spring 
with stiffness K 
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