DEPARTMENT OF ELECTRONICS
& COMMUNICATION

Control System
(BEC403)
IV SEMESTER

/Student [111 1 =

USN:

Section:

At the end of the course students should be able to:

CO1 Construct the mathematical model of mechanical and electrical systems and solve for
the transfer functionAnalysis

CO2 Develop the transfer function for a given control system by applying the knowledge
of block diagram reduction techniques and signal flow graphs

CO3 Determine the time domain specifications of first order and second order systems and
discuss the operations of different controllers

CO4 Analyze the stability of a given control system in time domain and frequency domain
using relevant techniques

COs Develop the state model of the given electrical/mechanical system using state variable
analysis

CO6 Analyze the stability of a system from the transfer function

CO-PO Mapping:

CO/PO' PO PO PO PO PO PO PO POl POl POl
S POl 2 3 4 5 6 P07 8 9 0 1 2
COl 3 2 1 - - - 1 2 - 2
CO2 2 3 3 1 1 - - 1 2 - 2
CO3 3 3 2 1 1 - - - 1 1 - 2
CO4 3 3 2 1 1 1 1 - 1 1 - 2
CO5 3 3 2 1 1 1 - 1 1 - 2
CO6 3 3 2 1 1 1 1 1 1
AVG 2.83 | 283 | 2.2 1 1 1 1 = 1 1.33 = 1.83
CO-PSO Mapping:
CO/PSO'S PSO1 PSO2
Co1 3 2
CO2 2 2
CO3 3 2
CO4 3 1
CO5 3 0
3 0
CO6
AVG 2.833 1.16

PRACTICAL COMPONENT OF IPCC
Using suitable simulation software (P-Spice/ MATLAB / Python / Scilab / OCTAVE / LabVIEW)
demonstrate the operation of the following circuits:
SLNo Experiments
1 |Implement Block diagram reduction technique to obtain transfer function a control system.
2 |Implement Signal Flow graph to obtain transfer function a control system.
3 |Simulation of poles and zeros of a transfer function.
4 |Implement time response specification of a second order Under damped System, for different
damping factors.
5 |Implement frequency response of a second order System.
6 |[Implement frequency response of a lead lag compensator.
7 |Analyze the stability of the given system using Routh stability criterion.
8
9

\Analyze the stability of the given system using Root locus.
\Analyze the stability of the given system using Bode plots.
10 |Analyze the stability of the given system using Nyquist plot.
11 |Obtain the time response from state model of a system.
12 |Implement PI and PD Controllers.

CIE for the practical component of IPCC

» On completion of every experiment/program in the laboratory, the students shall be
evaluated and marks shall be awarded on the same day. The 15 marks are for
conducting the experiment and preparation of the laboratory record, the other 05
marks shall be for the test conducted at the end of the semester.

» The CIE marks awarded in the case of the Practical component shall be based on the
continuous evaluation of the laboratory report. Each experiment report can be
evaluated for 10 marks. Marks of all experiments’ write-ups are added and scaled down
to 15 marks.

« The laboratory test (duration 03 hours) at the end of the 15th week of the semester
/after completion of all the experiments (whichever is early) shall be conducted for
50 marks and scaled down to 05 marks.

+ Scaled-down marks of write-up evaluations and tests added will be CIE marks for the
laboratory component of IPCC for 20 marks.

SEE for IPCC
Theory SEE will be conducted by University as per the scheduled timetable, with common
question papers for the course (duration 03 hours)

» The question paper will have ten questions. Each question is set for 20 marks.

» There will be 2 questions from each module. Each of the two questions under a
module (with a maximum of 3 sub-questions), should have a mix of topics under that
module.

» The students have to answer 5 full questions, selecting one full question from each
module.

The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical
portion will have a CIE component only. Questions mentioned in the SEE paper shall
include questions from the practical component.

s The minimum marks to be secured in CIE to appear for SEE shall be the 12 (40% of
maximum marks-30) in the theory component and 08 (40% of maximum marks -20] in
the practical component. The laboratory component of the IPCC shall be for CIE only.
However, in SEE, the questions from the laboratory component shall be included. The
maximum of 04/05 questions to be set from the practical component of IPCC, the total
marks of all questions should not be more than the 20 marks.

SEE will be conducted for 100 marks and students shall secure 35% of the maximum marks to
qualify inthe SEE. Marks secured out of 100 shall be reduced proportionally to 50.

Suggested Learning Resources:
Text Books

1. Control Systems Engineering, I | Nagrath, M. Gopal, New age international Publishers, Fifth
edition.

Web links and Video Lectures (e-Resources):

s https://nptel.acin/courses/108106098

Activity Based Learning (Suggested Activities in Class)/ Practical Based learning

Programming Assignments / Mini Projects can be given to improve programming skills

What is Octave?

Octave is an open-source interactive software system for numerical computations and graphics. It is
particularly designed for matrix computations: solving simultaneous equations, computing eigenvectors
and eigenvalues and so on. In many real-world engineering problems the data can be expressed as
matrices and vectors, and boil down to these forms of solution. In addition, Octave can display data in a
variety of different ways, and it also has its own programming language which allows the system to be
extended. It can be thought of as a very powerful, programmable, graphical calculator. Octave makes it
easy to solve a wide range of numerical problems, allowing you to spend more time experimenting and

thinking about the wider problem.

Octave was originally developed as a companion software to a undergraduate course book on chemical
reactor design. It is currently being developed under the leadership of Dr. J.W. Eaton and released under
the GNU General Public License. Octave's usefulness is enhanced in that it is mostly syntax compatible

with MATLAB which is commonly used in industry and academia.

Who uses Octave?

Octave and MATLAB are widely used by engineers and scientists, in both industry and academia for
performing numerical computations, and for developing and testing mathematical algorithms. For
example, NASA use it to develop spacecraft docking systems; Jaguar Racing use it to display and analyse
data transmitted from their Formula 1 cars; Sheffield University use it to develop software to recognise
cancerous cells. It makes it very easy to write mathematical programs quickly, and display data in a wide

range of different ways.

Starting Octave

1 Octave - X
File Edit Debug Window Help News

D i‘ _@ H Current Diedory:| C:\UsersDELL Y|

File Browser B X Editor & X

’W“ ﬁ File Edit View Debug Run Help
. S IEREASPYelD LT Y

>

> 1 auinolDE m’m‘
) | config
) 320 Objets 1 pkg load control A
> m Contacts : 35
> Bl Desktop 4 clear all
> = Documents 5 kp=300;
» & Downloads 6 ka=1]
) 1 Favorites 7 nunl=(kd, kpl;
) Links v 8 denl=1;
R o 9 controller tf = tf (numl, denl);
10 num2=1;
st [1t denz=pt 20 0
-0t . 12 plant tf=tf(num2, den2); v
D=0 col: CRLF fine: 6 col6
sy5=55(ABCD)
si=s Y M
dummy Command Window X
dummy
dummy
dummy
dummy
s
v
sV
dummy
si
dummy
S
dummy
dummy
pkg load control
de
syms S
A=010001;-6-11-6];
8= 001}
C=1100];
D=0;
q |

Octave as a calculator

The simplest way to use Octave is just to type mathematical commands at the prompt, like a normal

calculator. All of the usual arithmetic expressions are recognised. For example, type
octave:##> 2+2

at the prompt and press return, and you should see

ans =4

The basic arithmetic operators are +-*/, and"is used to mean ‘to the power of (e.g. 2"3=8).
Brackets () can also be used. The order precedence is the same usual i.e. brackets are evaluated first, then

powers, then multiplication and division, and finally addition and subtraction. Try a few examples.
Built-in functions

As well as the basic operators, Octave provides all of the usual mathematical functions, and a selection of
these can be seen in the Table. These functions are invoked as in C++ with the name of the function and
then the function argument (or arguments) in ordinary brackets (), for example (A function's arguments
are the values which are passed to the function which it uses to calculate its response. In this example the
argument is the value "1', so the exponent function calculates the exponential of 1 and returns the value

(i.e. €')=2.7183).)

octave:##> exp(1)

ans =2.7183

Here is a longer expression: to calculate 1.2%sin(40° + In(2.4%)), type

octave:##> 1.2 * sin(40*pi/180 + log(2.4"2))

ans = 0.76618

There are several things to note here:

An explicit multiplication sign is always needed in equations, for example between the 1.2 and sin.

The trigonometric functions (for example sin) work in radians. The factor pi/180 can be used to convert

degrees to radians. pi is an example of a named variable, discussed in the next section.

The function for a natural logarithm is called "log', not "In'.

https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/tabbasicmaths

Table 1: Basic maths functions

cos |Cosine of an angle (in radians)

sin Sine of an angle (in radians)

tan [Tangent of an angle (in radians)

exp |Exponential function (e”x)

log Natural logarithm (NB this is log,, not \log;,)

log10 [Logarithm to base 10

sinh |Hyperbolic sine

cosh |Hyperbolic cosine

tanh |Hyperbolic tangent

acos |Inverse cosine

acosh [Inverse hyperbolic cosine

asin |Inverse sine

asinh [Inverse hyperbolic sine

atan |Inverse tangent

atan2 [Two-argument form of inverse tangent

atanh [Inverse hyperbolic tangent

abs |Absolute value

sign |Sign of the number (-1 or +1)

round |Round to the nearest integer

floor |Round down (towards minus infinity)

ceil |Round up (towards plus infinity)

fix Round towards zero

rem |Remainder after integer division

Using these functions, and the usual mathematical constructions, Octave can do all of the things that your
normal calculator can do.

Named variables

In any significant calculation you are going to want to store your answers, or reuse values, just like using
the memory on a calculator. Octave allows you to define and use named variables. For example, consider
the degrees example in the previous section. We can define a variable deg to hold the conversion factor,

writing
octave:##> deg = pi1/180
deg =0.017453

Note that the fype of the variable does not need to be defined, unlike most high level languages e.g. in
C++. All variables in Octave are floating point numbers. (Or strings, but those are obvious from the
context. However, even strings are stored as a vector of character ID numbers.) Using this variable, we

can rewrite the earlier expression as

octave:##> 1.2 * sin(40*deg + log(2.4"2))

ans =0.76618

You will have already have seen another example of a variable in Octave. Every time you type in an
expression which is not assigned to a variable, such as in the most recent example, Octave assigns the
answer to a variable called ans. This can then be used in exactly the same way:

octave:##> new = 3*ans

new =2.2985

Getting help

If you are not sure what a particular Octave command does, or want to find a particular function, Octave
contains an integrated help system. The basic form of using help is to type

help commandname

For example:

octave:1> help sqgrt

sqrt is a built-in function

- Mapping Function: sqrt (X)

Compute the square root of X. If X is negative, a complex result is returned. To compute the matrix
square root, see *Note Linear Algebra::.Additional help for built-in functions, operators, and variables is
available in the on-line version of the manual. Use the command “doc ' to search the manual index.

Help and information about Octave is also available on the WWW at http://www.octave.org and via the

help@octave.org mailing list.

Arrays and vectors

There are lots of ways of defining vectors and matrices. Usually the easiest thing to do is to type the
vector inside square brackets [], for example

octave:##> a=[1 4 5]

1 4 5

octave:##> b=[2,1,0]

mailto:help@octave.org

octave:##> c=[4;7;10]

10
A list of numbers separated by spaces or commas, inside square brackets, defines a row vector.
Numbers separated by semicolons, or carriage returns, define a column vector.

You can also construct a vector from an existing vector by including it in the definition, for example

octave:##> a=[1 4 5]

1 4 5

octave:##> d=[a 6]

Plotting graphs

Octave has powerful facilities for plotting graphs via a second open-source program GNUPLOT, however
some of the range of plotting options are restricted compared with MATLAB. The basic command
is plot(x,y), where x and y are the co-ordinates. If given just one pair of numbers it plots a point, but
usually you pass vectors, and it plots all the points given by the two vectors, joining them up with straight
lines.(The two vectors must, naturally, both be the same length.) The sine curve defined in the previous
section can be plotted by typing

octave:##> plot(angles,y)

A new window should open up, displaying the graph, shown below. Note that it automatically selects a
sensible scale, and plots the axes.

10

http://www.gnuplot.org/
https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/figcos1

Figure 1: Graph of y=sin(x), sampled every 60°
At the moment it does not look particularly like a sine wave, because we have only taken values one
every 60 degrees. To plot a more accurate graph, we need to calculate y at a higher resolution:
octave:##> angles=linspace(0,2*pi,100);
octave:##> y=sin(angles);
octave:##> plot(angles, y);

The linspace command creates a vector with 100 values evenly spaced between 0 and 27 (the value 100 is
picked by trial and error). Try using these commands to re-plot the graph at this higher resolution.
Remember that you can use the arrow keys to go back and reuse your previous commands.

Improving the presentation

You can select the colour and the line style for the graph by using a third argument in the plot command.

For example, to plot the graph instead with red circles, type

octave:##> plot(angles, y, 'ro')

The last argument is a string which describes the desired styles. Table 3 shows the possible values (also

available by typing help plot in Octave).

Table 3: Colours and styles for symbols and lines in the plot command

11

https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/#tablinestyles

octave:##> title('Graph of y=sin(x)")
octave:##> xlabel('Angle')
octave:##> ylabel('Value')

Experiment — 1

12

Aim: Implement Block diagram reduction technique to obtain transfer function a control system

Problem 1:

7]

2]

G1=1/s, G4=1/(s+1) , G2=s , G3=1, Hl=s, H2=1/s

Code:

% Implement Block diagram reduction technique -Program1
pkg load control

clc

clf

num1=[1]

denl=[10];

tf1=tf(num1l, denl) % transfer function 1/s
num2=[1]

den2=[11]

tf2=tf(num2, den2) % transfer function 1/s+1
num3=[1 0]

den3=[1]

tf3=tf(num3, den3)% transfer function s
tf4=series(tf1, tf2)

tf5=feedback(tf4,tf3)

num3=[1 0]

den3=[1]

tf6=tf(num3, den3)% transfer function s
tf7=parallel(tf6,1)

tf8=series(tf5, tf7)

num3=[1]

den3=[1 0]

tf9=tf(num3, den3)% transfer function 1/s
tfinal=feedback(tf8,tf9)

Output: Transfer function 'tfinal’ from input 'ul' to output ...

Transfer function 'tfinal' from input 'ul' to output ...

5"3 + 2352+ 35 +1

13

Experiment — 2

Aim: Implement Signal Flow graph to obtain transfer function a control system.

% Signal Flow graph (Masons Gain Formula)
pkg load control

clc

G1=1; G2=2; G3=3; G4=4;

H1=-5; H2=-6; H3=-7; H4=-8;

fp1=G1*G2*G3;
fp2=G4;

di=1;
d2=1+H1+H2+H1*H2;

11=H1;

12=H2;
13=G3*H4;
14=G2*G3*H3;

ntll=H1*H2;
ntl2=H1*(G3*H4);

num=(fp1*d1l + fp2*d2)

d =1-(11+12+I3+14)+(ntl1+ntl2)
tf = num/d

display(tf)

Output

num = 86

d= 228

tf = 0.37719

Solution
. Forward Paths
(1) G\6:0;
(2) Ga
Loops
(1) = H,
(2) - H,
(3) - G.H,
4) = ngng)
Non Touching Loops
(1) - Hyand — H,
(2) = Hyand — G;H,
T — GIGzG;q + G4 (14+ H + H;, + H 1)) ABS,
14+ H, + H, + Gjﬁl + G;G34; + H\H, + GH A,

Experiment — 3
Aim: Simulation of poles and zeros of a transfer function.

Code:

pkg load control CFigure 1 - o x
le File Edit H

CIC @ z+ 7z & IsertText L3 Axes Grid Autoscale

clear all

% Plot poles and zeros

s = tf('s');

g =(s-1)/(s-2);
pzmap(g);
figure

g2=(s+1)/(s-2)/(s+3);
pzmap(g2);

nUm].:[]. -3 2]) Figure 2 - o X

File Edit Help
© z+ z- '-I-' sert Text [3 Axes Grid Autoscale

Pole-Zero Map

denl=[1-712];
tf1=tf(num1, den1l)

figure
pzmap(tfl);

4 Figure 3 - O
File Edit Help

Y+ Z- ‘-I-‘ sert Text Lt Axes Grid Autoscale

Pole-Zero Map
1

o5t

Imaginary Axis

N OO OO P O UON SO TSP PO SOPT OO PORTPOPTS SURORRPRORONE

Experiment — 4

Aim: Implement time response specification

of a second order Under damped System, for different damping factors.

Code:

pkg load control
clc

s = tf('s');
sys =36/(s"2+6*s+36);

t=0:0.001:6;
[y, t] = step(sys, t);

plot(t, y);
. Figure 1 - O X
File Edit Help
Z+ Z- +# InsertText [Axes Grid Autoscale
1.4 T T T 16
1.2

Maximum overshoot:

_ mX0.5
My = e VI-(057 x 100
Mp = 0.163 x 100 = 16.3%

Peak Time:
. = I3
: mnv 1- {:2
T
t, = ——— = 0.605 sec.
P 6v1-—052

17

Rise Time:

V18 V1 —10.52

T —tan T T — tan_ 0 5
t t = :
' w1 — € wyV1 — 0.52
— 3471047 _ 5 403sec.
5.19
4 4
Settling Time: te = — = 1.33 sec.

ts = ———
Ew, * 05%x6

Experiment — 5
Aim: Implement frequency response of a second order System.

Code

pkg load control
clc

% Define system parameters
omega_n = 10; % Natural frequency
zeta=0.1; % Damping ratio

% Excitation frequency ratio

beta = linspace(0, 2, 100); % Vary beta from 0 to 2
X_over_U =1./sqrt((1 - beta.r2)./A2 + (2*zeta*beta). 2);
phi = atan2(-2*zeta*beta, 1 - beta.*2);

18

% Plot magnitude ratio
subplot(2, 1, 1);
semilogy(beta, X_over_U, 'b');
xlabel('\beta');
ylabel('|X(\omega)| / [U]");
title('"Magnitude Ratio');

% Plot phase angle
subplot(2, 1, 2);
plot(beta, phi, 'r');
xlabel('\beta');
ylabel("\phi(\omega)');
title('Phase Angle');

% Adjust plot appearance
sgtitle('Frequency Response of Second-Order System’);

Output:

& Figure 1 - O X
File Edit Help

9 z+ 7o & mnsertText [; Axes Grid Autoscale

Magnitude Ratio

n
o

3
t

=
m
T
S
|
|

I%(w)| / U]

15 2

Experiment — 6 ol

15 2

me

Aim: Analyze the stability of the given system

using Routh stability criterion.

Code:

pkg load control

cle

% Taking coefficients vector and organizing the first two rows
coeffVector = input('input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] =");
ceoffLength = length(coeffVector);

rhTableColumn = round(ceoffLength/2);

% Initialize Routh-Hurwitz table with empty zero array
rhTable = zeros(ceoffLength,rhTableColumn);

% Compute first row of the table

rhTable(1,:) = coeffVector(1,1:2:ceoffLength);

% Check if length of coefficients vector is even or odd

19

if (rem(ceoffLength,2) ~= 0)
% if odd, second row of table will be

rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength);

else
% if even, second row of table will be
rhTable(2,:) = coeffVector(1,2:2:ceoffL.ength);

end

% % Calculate Routh-Hurwitz table's rows

% Set epss as a small value

epss = 0.01;

% Calculate other elements of the table

for i = 3:ceoffLength

% special case: row of all zeros
if rhTable(i-1,:) == 0
order = (ceoffLength - i);
cntl = 0;
cnt2 =1;
for j = 1:rhTableColumn - 1
rhTable(i-1,j) = (order - cntl) * rhTable(i-2,cnt2);
cnt2 =cnt2 + 1;
cntl = cntl + 2;
end
end

for j = 1:rhTableColumn - 1
% first element of upper row
firstElemUpperRow = rhTable(i-1,1);

% compute each element of the table
rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1)) -
(rhTable(i-2,1) * rhTable(i-1,j+1))) / firstElemUpperRow;
end

% special case: zero in the first column
if rhTable(i,1) == 0
rhTable(i,1) = epss;
end
end
%% Compute number of right hand side poles(unstable poles)
% Initialize unstable poles with zero
unstablePoles = 0;
% Check change in signs
for i = 1:ceoffLength - 1
if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1
unstablePoles = unstablePoles + 1;
end
end
% Print calculated data on screen

20

fprintf("\n Routh-Hurwitz Table:\n")

rhTable
% Print the stability result on screen
if unstablePoles ==

fprintf(’ > jt is a stable system! < \n')
else

fprintf(’ > it is an unstable system! < \n')
end

fprintf("\n Number of right hand side poles =%2.0f\n',unstablePoles)
Output:
input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] =[1 23 4 5 6]

Routh-Hurwitz Table:
rhTable =

1.00000 3.00000 5.00000
2.00000 4.00000 6.00000
1.00000 2.00000 0.00000
0.01000 6.00000 0.00000
-598.00000 0.00000 0.00000
6.00000 0.00000 0.00000

Number of right hand side poles = 2

21

Experiment — 7

22

Aim: Analyze the stability of the given system using Root locus

Code 1:

pkg load control

clc

%sys = tf([2 5 1],[1 2 3]);
s = tf('s');

g =1/(s-0);

sys = tf(g);

rlocus(sys)

{ Figure 1 - o x
File Edit Help
@ z+ z2 b InsertText [3 Axes Grid Autoscale

Root Locus of sys

—locus

open loop poles

Imaginary Axis

-1 -0.8 -0.2 o

-0.6 -0.4
Real Axis gain = [0, 1]

> locus-

W Consider unity feedback system with G(s) =

e characteristic equation becomes,

K o
- Obtain its roots locus,

: Th
sululioﬂ- g
14 G{ﬁ“’“ﬂ} =0, H@E)=1
1+ K = 0
s
s+K = 0
he root of this equation is located at s = - K.

Now if gain *K’ is varied from 0 to + o, the location of this root is going to change.

The locus obtained by joining all such locations when K is varied from 0 to + = is

alled root locus.
e e Imj
K s=-K |
Root |
location
0 0 |
1 -1
10 =10
s-plane
r Fig. 9.2.2
+ —na |

Code 2:

23

pkg load control

clc

s = tf('s');

g =(s+2)/(s"2+2*s+2)/(s"3+3*sN2);
sys = tf(g);

rlocus(sys)
Root Locus of sys
T
: - - - asymptotes
: — locus
4 - open loop poles
© zeros
2F
o
® :
< :
=
EOF
o :
T :
E
-2 _
-G -4 -2 o] 2 4
Real Axis gain = [0, 2093.4]
Code 3:

Example 9.5.2 G(s)H(s) = K(s+2)
s2(s2 +25+2)(s+3)

belongs to the root locus.

. Find the sections of real axis which

Solution : Poles are at 0, 0, -1 + j, -3. [Zero is at =21

Pole - zero plot is as shown in the
Fig. 9.5.3. o | ¢

For itive real axi i e

positive axis, there is no al origin

Pokfrﬂmtﬂﬂsi'lthﬂnﬂsidem _NRL _ RL NRL | NRL /N’RL
sum is zero and hence there is no 3 .5 -1 T 3
root locus. '

For next section between s = 0 to R———ij
s = -2, to the right hand side sum is NRL— No Root Locus

root locus. Complex Cﬂnjllg!ﬁ! roots s o
should not be considered while s rule. For n

s=-3, to right hand side sum is 3,
section o let of s = -

24

pkg load control

clc

s = tf('s');

g =(s+6)/(s+2)/(s"2+4*s);
sys = tf(g);

rlocus(sys)

Root Locus of sys

T T T | EEETET R TR IR R —-Iaos] ptotes
: : : : : - oper] loop poles

Imaginary Axis

-G -4 -2 v} 2
Real Axis gain = [0, 316.8]

Eramie 554 K10
Example 9.5.4 = e

For G(s)H(s) s(s+2)rs+4)hmumanymmmum Mmﬂy?ﬂmﬁsm,
Solution : In this case there are two pairs of adjacently Placed poles on rea axis,

s =0 and s = — 2, section between them is a

part of root locus hence minimum one
breakaway point exists in between them. NRLT
Now s = -2 and s = —4 also forms a pair of <—-§—‘: A —t—
adjacently placed poles but section between : ¥
them is not the part of root locus and hence Breakawiy ot
there cannot be a breakaway point in between ;
Fig. 9.5.7

them. So minimum one breakaway point exists
between s =0 and s = —2. In such case, branches are approaching towards breaki]

point from the poles.

25

Code 4:

pkg load control

clc

%sys = tf([2 5 1],[1 2 3]
s = tf('s');

);

g =10/(s"2+2%*s)/(s"2+6*s+25);

sys = tf(g);
rlocus(sys)

£ Figure 1 — O
File Edit Help

&

Imaginary Axis

™M 7+ 7- <-I-i Insert Text L Axes Grid Autoscale

Root Locus of sys

- - -asymptotes

locus

open loop poles
=

o

-10 -5 1] =1
Real Axis gain = [0, 2370.64]

T — S ey e

| @ (A€ opem-loop transfer function of & control sestew & rme by

_ K
-

s(s+2(s*

Sketch the complete

£)(§T +6s +25)

root-locus es K is naried from (to-imfomii

26

Experiment — 8

28

Aim: Analyze the stability of the given system using Bode plots.

Code 1:

pkg load control
clc

% Define the transfer function

s = tf('s');

g = 80/(s"2+2*s)/(s+20);

% Specify the frequency range (1 Hz to 1074 Hz)
freq_range = {1, 10n4};

% Compute the Bode plot
[bmag, bphase, bfreq] = bode(g, freq_range);

% Convert frequency from rad/s to Hz
bfreq_hz = bfreq / (2 * pi);

Bode Plot

2]
=]

=]
T

% Plot the magnitude response
subplot(2, 1, 1);

semilogx(bfreq_hz, 20 * log10(bmag));
grid on;

title('Bode Plot'); 250

'
[
[=]

Magnitude (dB)
LA
o
=1

ylabel('Magnitude (dB)'); 1o 1e+0

L L
le+l let2 le+3 le+4

% Plot the phase response
subplot(2, 1, 2);
semilogx(bfreq_hz, bphase);
grid on;

xlabel('Frequency (Hz)');

Phase (degrees)

ylabel('Phase (degrees)');

le-1 le+0

:m“mmxm:wm““‘ " s+

piot Determme G.M., PM., 8 and w,, Comment on o

Solution : Step 1: Arrange Gis)H(s) in time constant form
80 e
o z —— , His) = 1
Gl = e

e i —
 § Fe St s . M, ®

le+l let2 le+3 le+4

Frequency (Hz)

29

5

Experiment — 9

30

Aim: Implement frequency response of a lead lag compensator.

Theory: A lead-lag compensator is a component in a control system that combines a lead compensator
and a lag compensator to improve a system's frequency response. It's a fundamental building block in
classical control theory and is used in a variety of disciplines, including robotics, satellite control, and

automobile diagnostics.

A lag lead compensator is a type of electrical network that generates phase lag as well as phase lead in the
output signal at different frequencies when a steady-state sinusoidal input is provided to it. It is also

known as lag lead network.

In case of a lag lead compensator, the phase lead and phase lag occur at different frequency regions.
Generally, at low-frequency phase lag characteristics is noticed in the output of the circuit. While at high

frequency, we have phase lead characteristics.

The figure below shows the pole-zero plot of the lag lead compensator:

Imag.

£

Real

|= >

x
1 1 1
Tl TZ BTz

b

A lead-lag compensator combines the effects of a lead compensator with those of a lag compensator. The
result is a system with improved transient response, stability, and steady-state error. To implement a
lead-lag compensator, first design the lead compensator to achieve the desired transient response and
stability, and then design a lag compensator to improve the steady-state response of the lead-compensated

system.

31

Lead or phase-lead compensator using frequency response

A first-order phase-lead compensator can also be designed using a frequency reponse approach. A lead compensator in frequency response form is given by the following.

14+ als @)
Cls)= ——— [a>1]
14+Ts
Note that this is equivalent to the root locus form repeated below
, - (85— 2) @
C(s) = K,
s — po)

withp=1/T z=1/aT, and Kc = a. In frequency response design, the phase-lead compensator adds positive phase to the system over the frequency range 1/aTto 1/ T A

Bode plot of a phase-lead compensator C(s) has the following form.

GaindB

17aT 1/T

Frequency (radisec)

Phase deg

Code :

pkg load control
clc

% Define the transfer function

num1=[2 3 1]

denl=[24.51];

g=tf(numl, denl)

% Specify the frequency range (1 Hz to 10°4 Hz)
freq_range = {1, 10n4};

% Compute the Bode plot
[bmag, bphase, bfreq] = bode(g, freq_range);

% Convert frequency from rad/s to Hz
bfreq_hz = bfreq / (2 * pi);

% Plot the magnitude response
subplot(2, 1, 1);

semilogx(bfreq_hz, 20 * log10(bmag));
grid on;

title('Bode Plot');

ylabel('Magnitude (dB)');

% Plot the phase response
subplot(2, 1, 2);

32

semilogx(bfreq_hz, bphase);
grid on;

xlabel('Frequency (Hz)');
ylabel('Phase (degrees)');

Bode Plot

Magnitude (dB)
Loe, 0
[Y ST

'
r
w

le-1 le+0 le+l latz lat+z let+4

Phase (degrees)

le-1 le=+0 le+1 let2 le+3 le+4
Frequency (Hz)

Pole-Zero Map

1 | | |

osf
»
5
F
Eoop x
£
i
E

05k

1
2 15 -1 05 o
Real Axis

33

Experiment — 10

Aim: Analyze the stability of the given system using Nyquist plot.

Code:

pkg load control
clc

% Define the transfer function
num1=[240]

denl=[112 20 1];

g=tf(numl, denl)

nyquist(g)

RRRRR

34

joy (2~ j o) g
Cja) (2 + oy (2~ ja)

~12Ke’ Kjo(20

K(-jo (10~
GoH(p) = (jo I-m;(uuimmt'l-

- Kjw|20 - Iij-m)] <

G(H(o) = T4+ o?) (100+ mz) D D .,

where D = w(4+ ®?) (100 + w?)
Equating imaginary part to zero, .
= J20 il

o(20-0?) = 0 ie @ =20 ie Op =

Substituting in real part,
; -12 Kx 20 = D
Point @ = 55 50+ 4)x (100+ 20) 240
Step 6 : The Nyquist plot is,
Step 7 : Now for absolute stability, N = 0

i.e. it should be located on left side of point Q ie. | OQ | <1

K
'_ﬁl <1
! K < 240
So range of values of K for stability is
=22 ’
|0 <K <240 I
-270°, +90°
s=-j0
-1 s
- i Q 0 8 =+ joo L
T
=K
N=0 240 ¢
for stability :
s=+j0 i
-90°
Fig. 12.13.2 4

36

Experiment — 11

Aim: Obtain the time response from state model of a system

Code:

pkg load control

clc

A =[-0.5 -0.5;0.333 0];

B =[0.5;0];
c=[01];
D=0;

sys = ss(A,B,C,D);

step(sys)

Output:

sys.a =
x1 x2
x1 -0.5 -0.5

x2 0333 O

sys.b =
ul
x1 0.5
x2 0

sys.c =
x1 x2
yl 0 1

sys.d =
ul
vl O

., Figure 1 — O

Help

Z- -I-' Insert Text L\ Axes Grid Autoscale

Step Response

SYS

Obtain the state model of the given dectrical system

;
2E=IT.

Fig. 1341

jution : There are two energy storing elements L and C. So the two state variables are
crent through inductor i(t) and voltage across capacitor ie. voft).

Xy(t) = i() and X(t) =v,0)
ad U(f) = v(t) = Input variable
Applying KVL to the loop,

v® = i R+L %(:—’ +v(t)

Arrange it for di(t)/dt,

i diy 2

ég:'_)' - %Vi(t}-‘%i.(t)—%vo(t) btl—t-—dT‘:xl(t)

X L ! ~
e X® = -Sx@-pxe0+g U0

s e
Nhile v,(f) = Voltage across capacitor = EI i(t) dt
t -
wa® _ Lyy b g o0 -0

: e

e % = gH |
The equations (1) and (2) &V required state equations.

e R _1] g
P R _Lmxo].|tlve |
[l 2 L‘] el
X2(t) C ;

Ll Po e
ie. Xt = AX®+B ue
While the output variable Y() = Yo = e
‘ x1]+ @ U |
B Y@ =101 [xz
- e e s thennd for knOWIOO08
ie. Y(@® = CX@® and D =10]

This is the required state model. Asn =2, itis a secom;l _gfggr system.

38

Aim: Implement Pl and PD Controllers

Code:

Experiment — 12

pkg load control

clf

clc

clear all

kp=20;

ki=50

num1=[kp, kil;
denl=[10];

controller_tf = tf (hum1, denl);
num2=1;

den2=[1 20 30];
plant_tf=tf(num2, den2);

overall_tf=feedback(controller_tf*plant_tf, 1);

t=0:0.01:2;
step (overall_tf, t);

(_', Figure 1

File Edit Help

- O
& z+ z- ‘-I-' InsertText [t Axes Grid Autoscale
Step Response
U overallf
R v

LB rre e e e

Given, transfer function of a plant is P(s) =

Solution:
Block Diagram

R(s) 8

/ :
0.4 F
/ :
] o5 1 1.5 2
Time [s]
1
52+4205+30
Pl Controller
Controller C(S) - Plant P(s) ‘:;t__sj

Figure 7.1 : Block diagram of cliosed loop control system.
We Know that, the tranfer function of PI controller

K
C(s) = Kp + ?

Tranfer function after introducing PI controller

T(s) =

Let, Kp=20 and K;=50

(Kps + K;)
5%+ 10s?2 4+ (20 + Kp)s + K;

39

Code:

Step Response

ovel'alllf

pkg load control
clf Vs
clc

0.8
clear all
kp=300; |
kd=10 I'
num1=[kd, kp]; '
denl=1; :
controller_tf = tf (num1, den1); 0.4__|__......................,E..........................,E
num2=1; l : : :
den2=[1 20 30J; Ll
plant_tf=tf(num2, den2); |'
overall_tf=feedback(controller_tf*plant_tf,
1); : :
1=0:0.01:2; 0 0.5 1 1.5 2
step (overall_tf, t);

..)) 1
Given, transfer function of a plant is P(s) = ————
5<+205+30

PD Controller

R(s)
>®> Controller C(3) - Plant P(s)

Solution:

¥(s)

Figure 8.1 : Block diagram of cliosed loop control system

We Know that, the tranfer function of PI controller
C(s) =Kp + Kys

Tranfer function after introducing PI controller
(Kps + Kp)

1) = T a0+ Kyys + 20+ Ky)

Let, Kp=200 and Kp=10

Sample Viva Questions

40

Q-1 What is frequency response?

Ans: A frequency response is the steady state response of a system when the input to the system
is a sinusoidal signal.

Q-2 List out the different frequency domain specifications?
Ans: The frequency domain specification are 1. Resonant peak. 2. Resonant frequency.
Q-3 Define —-resonant Peak?

Ans: The maximum value of the magnitude of closed loop transfer function is called resonant
peak.

Q-4 Define —Resonant frequency?
Ans: The frequency at which resonant peak occurs is called resonant frequency.
Q-5 What is bandwidth?

Ans: The bandwidth is the range of frequencies for which the system gain Is more than 3 dbB.
The bandwidth is a measure of the ability of a feedback system to reproduce the input signal,
noise rejection characteristics and rise time.

Q-6 Define Cut-off rate?

Ans: The slope of the log-magnitude curve near the cut-off is called cut-off rate. The cutoff rate
indicates the ability to distinguish the signal from noise.

Q-7 Define — Gain Margin?

Ans: The gain margin is defined as the reciprocal of the magnitude of the open loop transfer
function at phase cross over frequency.

Q-8 Define Phase cross over?

Ans :The frequency at which, the phase of open loop transfer functions is called phase cross over
frequency opc.

Q-9 What is phase margin?

Ans : The phase margin is the amount of phase lag at the gain cross over frequency required to
bring system to the verge of instability.

41

Q-10 What are the main significances of root locus?

Ans:

1. The main root locus technique is used for stability analysis.

2. Using root locus technique the range of values of K, for as table system can be determined
Q-11 Define Gain cross over?

Ans :The gain cross over frequency wgc is the frequency at which the magnitude of the open
loop transfer function is unity.

Q-12 What is Bode plot?

Ans: The Bode plot is the frequency response plot of the transfer function of a system. A Bode
plot consists of two graphs. One is the plot of magnitude of sinusoidal transfer function versus
log ®. The other is a plot of the phase angle of a sinusoidal function versus log .

Q-13 What are the main advantages of Bode plot?

Ans: The main advantages are:

1. Multiplication of magnitude can be in to addition.

2. A simple method for sketching an approximate log curve is available.

3. It is based on asymptotic approximation. Such approximation is sufficient if rough information
on the frequency response characteristic is needed.

Q-14 Define Corner frequency?

Ans The frequency at which the two asymptotic meet in a magnitude plot is called corner
frequency. Q-

15 Define Phase lag and phase lead?
Ans A negative phase angle is called phase lag. A positive phase angle is called phase lead.
Q-16 What are M circles?

Ans The magnitude of closed loop transfer function with unit feedback can be shown to be in
the for every value if M. These circles are called M circles.

42

Q-17 What is Nichols chart?

Ans The chart consisting if M & N loci in the log magnitude versus phase diagram is called
Nichols chart.

Q-18 What are two contours of Nichols chart?

Ans :Nichols chart of M and N contours, superimposed on ordinary graph. The M contours are
the magnitude of closed loop system in decibels and the N contours are the phase angle locus of
closed loop system.

Q-19 How is the Resonant Peak(Mr), resonant frequency(or) , and band width determined
from Nichols chart?

Ans :1. The resonant peak is given by the value of contour which is tangent to G(jo) locus.

2. The resonant frequency is given by the frequency of G(jo) at the tangency point. 3. iii) The
bandwidth is given by frequency corresponding to the intersection point of G(jo) and —-3dB
M-contour.

Q-20 What are the advantages of Nichols chart?

Ans: The advantages are: 1. It is used to find the closed loop frequency response from open loop
frequency response. 2. Frequency domain specifications can be determined from Nichols chart.
3. The gain of the system can be adjusted to satisfy the given specification.

Q-21:What are the two types of compensation?

Ans :1. Cascade or series compensation 2. Feedback compensation or parallel compensation
Q-22 What are the three types of compensators?

Ans: 1. Lag compensator 2. Lead compensator 3. Lag-Lead compensator

Q-23 What are the uses of lead compensator?

Ans: 1. speeds up the transient response 2. increases the margin of stability of a system 3.
Increases the system error constant to a limited extent.

Q-24 What is the use of lag compensator?

43

Ans: Improve the steady state behaviour of a system, while nearly preserving its transient

response.
Q-25 What are the basic elements used for modelling mechanical rotational system?

Ans: Moment of inertia J, dashpot with rotational frictional coefficient B and torsional spring
with stiffness K

44

	What is Octave?
	Who uses Octave?
	Starting Octave
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	Named variables
	Getting help
	Arrays and vectors
	Plotting graphs
	Improving the presentation

	

