
Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

1

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

At the end of the course students should be able to:

CO1 Construct the mathematical model of mechanical and electrical systems and solve for
the transfer functionAnalysis

CO2 Develop the transfer function for a given control system by applying the knowledge
of block diagram reduction techniques and signal flow graphs

CO3 Determine the time domain specifications of first order and second order systems and
discuss the operations of different controllers

CO4 Analyze the stability of a given control system in time domain and frequency domain
using relevant techniques

CO5 Develop the state model of the given electrical/mechanical system using state variable
analysis

CO6 Analyze the stability of a system from the transfer function

CO-PO Mapping:

CO-PSO Mapping:

2

CO/PO'
S PO1

PO
2

PO
3

PO
4

PO
5

PO
6 P07

PO
8

PO
9

P01
0

PO1
1

PO1
2

CO1 3 2 1 - - - 1 2 - 2
CO2 2 3 3 1 1 - - - 1 2 - 2
CO3 3 3 2 1 1 - - - 1 1 - 2
CO4 3 3 2 1 1 1 1 - 1 1 - 2
CO5 3 3 2 1 1 1 - 1 1 - 2
CO6 3 3 2 1 1 1 1 1 1

AVG 2.83 2.83 2.2 1 1 1 1 - 1 1.33 - 1.83

CO/PSO'S PSO1 PSO2
CO1 3 2
CO2 2 2
CO3 3 2
CO4 3 1
CO5 3 0

CO6
3 0

AVG 2.833 1.16

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

3

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

4

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

What is Octave?

Octave is an open-source interactive software system for numerical computations and graphics. It is

particularly designed for matrix computations: solving simultaneous equations, computing eigenvectors

and eigenvalues and so on. In many real-world engineering problems the data can be expressed as

matrices and vectors, and boil down to these forms of solution. In addition, Octave can display data in a

variety of different ways, and it also has its own programming language which allows the system to be

extended. It can be thought of as a very powerful, programmable, graphical calculator. Octave makes it

easy to solve a wide range of numerical problems, allowing you to spend more time experimenting and

thinking about the wider problem.

Octave was originally developed as a companion software to a undergraduate course book on chemical

reactor design. It is currently being developed under the leadership of Dr. J.W. Eaton and released under

the GNU General Public License. Octave's usefulness is enhanced in that it is mostly syntax compatible

with MATLAB which is commonly used in industry and academia.

Who uses Octave?

Octave and MATLAB are widely used by engineers and scientists, in both industry and academia for

performing numerical computations, and for developing and testing mathematical algorithms. For

example, NASA use it to develop spacecraft docking systems; Jaguar Racing use it to display and analyse

data transmitted from their Formula 1 cars; Sheffield University use it to develop software to recognise

cancerous cells. It makes it very easy to write mathematical programs quickly, and display data in a wide

range of different ways.

5

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Starting Octave

Octave as a calculator

6

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

The simplest way to use Octave is just to type mathematical commands at the prompt, like a normal

calculator. All of the usual arithmetic expressions are recognised. For example, type

octave:##> 2+2

at the prompt and press return, and you should see

ans = 4

The basic arithmetic operators are + - * /, and ^ is used to mean `to the power of' (e.g. 2^3=8).

Brackets () can also be used. The order precedence is the same usual i.e. brackets are evaluated first, then

powers, then multiplication and division, and finally addition and subtraction. Try a few examples.

Built-in functions

As well as the basic operators, Octave provides all of the usual mathematical functions, and a selection of

these can be seen in the Table. These functions are invoked as in C++ with the name of the function and

then the function argument (or arguments) in ordinary brackets (), for example (A function's arguments

are the values which are passed to the function which it uses to calculate its response. In this example the

argument is the value `1', so the exponent function calculates the exponential of 1 and returns the value

(i.e. e1) = 2.7183).)

octave:##> exp(1)

ans = 2.7183

Here is a longer expression: to calculate 1.2*sin(40o + ln(2.42)), type

octave:##> 1.2 * sin(40*pi/180 + log(2.4^2))

ans = 0.76618

There are several things to note here:

An explicit multiplication sign is always needed in equations, for example between the 1.2 and sin.

The trigonometric functions (for example sin) work in radians. The factor pi/180 can be used to convert

degrees to radians. pi is an example of a named variable, discussed in the next section.

The function for a natural logarithm is called `log', not `ln'.

7

https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/tabbasicmaths

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Named variables
In any significant calculation you are going to want to store your answers, or reuse values, just like using

the memory on a calculator. Octave allows you to define and use named variables. For example, consider

the degrees example in the previous section. We can define a variable deg to hold the conversion factor,

writing

octave:##> deg = pi/180

deg =0.017453

Note that the type of the variable does not need to be defined, unlike most high level languages e.g. in

C++. All variables in Octave are floating point numbers. (Or strings, but those are obvious from the

context. However, even strings are stored as a vector of character ID numbers.) Using this variable, we

can rewrite the earlier expression as

octave:##> 1.2 * sin(40*deg + log(2.4^2))

8

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

ans =0.76618

You will have already have seen another example of a variable in Octave. Every time you type in an
expression which is not assigned to a variable, such as in the most recent example, Octave assigns the
answer to a variable called ans. This can then be used in exactly the same way:

octave:##> new = 3*ans

new =2.2985

Getting help

If you are not sure what a particular Octave command does, or want to find a particular function, Octave

contains an integrated help system. The basic form of using help is to type

help commandname

For example:

octave:1> help sqrt

sqrt is a built-in function

 - Mapping Function: sqrt (X)

 Compute the square root of X. If X is negative, a complex result is returned. To compute the matrix

square root, see *Note Linear Algebra::.Additional help for built-in functions, operators, and variables is

available in the on-line version of the manual. Use the command `doc ' to search the manual index.

Help and information about Octave is also available on the WWW at http://www.octave.org and via the

help@octave.org mailing list.

Arrays and vectors

There are lots of ways of defining vectors and matrices. Usually the easiest thing to do is to type the
vector inside square brackets [], for example

octave:##> a=[1 4 5]

 a =

 1 4 5

octave:##> b=[2,1,0]

 b =

 2 1 0

9

mailto:help@octave.org

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

octave:##> c=[4;7;10]

c =

 4

 7

 10

A list of numbers separated by spaces or commas, inside square brackets, defines a row vector.
Numbers separated by semicolons, or carriage returns, define a column vector.

You can also construct a vector from an existing vector by including it in the definition, for example

octave:##> a=[1 4 5]

a =

 1 4 5

octave:##> d=[a 6]

d =

 1 4 5 6

Plotting graphs

Octave has powerful facilities for plotting graphs via a second open-source program GNUPLOT, however
some of the range of plotting options are restricted compared with MATLAB. The basic command
is plot(x,y), where x and y are the co-ordinates. If given just one pair of numbers it plots a point, but
usually you pass vectors, and it plots all the points given by the two vectors, joining them up with straight
lines.(The two vectors must, naturally, both be the same length.) The sine curve defined in the previous
section can be plotted by typing

octave:##> plot(angles,y)

A new window should open up, displaying the graph, shown below. Note that it automatically selects a
sensible scale, and plots the axes.

10

http://www.gnuplot.org/
https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/figcos1

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Figure 1: Graph of y=sin(x), sampled every 60o

At the moment it does not look particularly like a sine wave, because we have only taken values one

every 60 degrees. To plot a more accurate graph, we need to calculate y at a higher resolution:

octave:##> angles=linspace(0,2*pi,100);​

octave:##> y=sin(angles);​

octave:##> plot(angles, y);

The linspace command creates a vector with 100 values evenly spaced between 0 and 2π (the value 100 is

picked by trial and error). Try using these commands to re-plot the graph at this higher resolution.

Remember that you can use the arrow keys to go back and reuse your previous commands.

Improving the presentation

You can select the colour and the line style for the graph by using a third argument in the plot command.

For example, to plot the graph instead with red circles, type

octave:##> plot(angles, y, 'ro')

The last argument is a string which describes the desired styles. Table 3 shows the possible values (also

available by typing help plot in Octave).

Table 3: Colours and styles for symbols and lines in the plot command

11

https://www-h.eng.cam.ac.uk/help/programs/octave/tutorial/#tablinestyles

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

octave:##> title('Graph of y=sin(x)')
octave:##> xlabel('Angle')
octave:##> ylabel('Value')

Experiment – 1

12

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Aim: Implement Block diagram reduction technique to obtain transfer function a control system

Problem 1:

G1=1/s, G4=1/(s+1) , G2=s , G3=1, H1=s, H2=1/s

Code:

% Implement Block diagram reduction technique -Program1
pkg load control
clc
clf
num1=[1]
den1=[1 0];
tf1=tf(num1, den1) % transfer function 1/s
num2=[1]
den2=[1 1]
tf2=tf(num2, den2) % transfer function 1/s+1
num3=[1 0]
den3=[1]
tf3=tf(num3, den3)% transfer function s
tf4=series(tf1, tf2)
tf5=feedback(tf4,tf3)
num3=[1 0]
den3=[1]
tf6=tf(num3, den3)% transfer function s
tf7=parallel(tf6,1)
tf8=series(tf5, tf7)
num3=[1]
den3=[1 0]
tf9=tf(num3, den3)% transfer function 1/s
tfinal=feedback(tf8,tf9)

Output: Transfer function 'tfinal' from input 'u1' to output ...

13

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Experiment – 2

Aim: Implement Signal Flow graph to obtain transfer function a control system.

% Signal Flow graph (Masons Gain Formula)
pkg load control
clc
G1=1; G2=2; G3=3; G4=4;
H1=-5; H2=-6; H3=-7; H4=-8;

fp1=G1*G2*G3;
fp2=G4;

d1=1;
d2=1+H1+H2+H1*H2;

l1=H1;
l2=H2;
l3=G3*H4;
l4=G2*G3*H3;

ntl1=H1*H2;
ntl2=H1*(G3*H4);

num=(fp1*d1 + fp2*d2)
d =1-(l1+l2+l3+l4)+(ntl1+ntl2)
tf = num/d
display(tf)

Output

num = 86

d = 228

tf = 0.37719

14

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Experiment – 3

Aim: Simulation of poles and zeros of a transfer function.

Code:

pkg load control
clf
clc
clear all
% Plot poles and zeros

 s = tf('s');
 g =(s-1)/(s-2);
pzmap(g);
figure

g2=(s+1)/(s-2)/(s+3);
 pzmap(g2);

num1=[1 -3 2]

15

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

den1=[1 -7 12];
tf1=tf(num1, den1)

figure
 pzmap(tf1);

Experiment – 4

Aim: Implement time response specification

of a second order Under damped System, for different damping factors.

Code:

pkg load control
clc

 s = tf('s');
sys =36/(s^2+6*s+36);

t = 0:0.001:6;
[y, t] = step(sys, t);
plot(t, y);

16

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Maximum overshoot:

17

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

Experiment – 5

Aim: Implement frequency response of a second order System.

Code

pkg load control
clc

% Define system parameters
omega_n = 10; % Natural frequency
zeta = 0.1; % Damping ratio

% Excitation frequency ratio
beta = linspace(0, 2, 100); % Vary beta from 0 to 2
X_over_U = 1 ./ sqrt((1 - beta.^2).^2 + (2*zeta*beta).^2);
phi = atan2(-2*zeta*beta, 1 - beta.^2);

18

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

% Plot magnitude ratio
subplot(2, 1, 1);
semilogy(beta, X_over_U, 'b');
xlabel('\beta');
ylabel('|X(\omega)| / |U|');
title('Magnitude Ratio');

% Plot phase angle
subplot(2, 1, 2);
plot(beta, phi, 'r');
xlabel('\beta');
ylabel('\phi(\omega)');
title('Phase Angle');

% Adjust plot appearance
sgtitle('Frequency Response of Second-Order System');

Output:

Experiment – 6

Aim: Analyze the stability of the given system

using Routh stability criterion.

Code:

pkg load control
clc
% Taking coefficients vector and organizing the first two rows
coeffVector = input('input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] = ');
ceoffLength = length(coeffVector);
rhTableColumn = round(ceoffLength/2);
% Initialize Routh-Hurwitz table with empty zero array
rhTable = zeros(ceoffLength,rhTableColumn);
% Compute first row of the table
rhTable(1,:) = coeffVector(1,1:2:ceoffLength);
% Check if length of coefficients vector is even or odd

19

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

if (rem(ceoffLength,2) ~= 0)
 % if odd, second row of table will be
 rhTable(2,1:rhTableColumn - 1) = coeffVector(1,2:2:ceoffLength);
else
 % if even, second row of table will be
 rhTable(2,:) = coeffVector(1,2:2:ceoffLength);
end
%% Calculate Routh-Hurwitz table's rows
% Set epss as a small value
epss = 0.01;
% Calculate other elements of the table
for i = 3:ceoffLength

 % special case: row of all zeros
 if rhTable(i-1,:) == 0
 order = (ceoffLength - i);
 cnt1 = 0;
 cnt2 = 1;
 for j = 1:rhTableColumn - 1
 rhTable(i-1,j) = (order - cnt1) * rhTable(i-2,cnt2);
 cnt2 = cnt2 + 1;
 cnt1 = cnt1 + 2;
 end
 end

 for j = 1:rhTableColumn - 1
 % first element of upper row
 firstElemUpperRow = rhTable(i-1,1);

 % compute each element of the table
 rhTable(i,j) = ((rhTable(i-1,1) * rhTable(i-2,j+1)) -
 (rhTable(i-2,1) * rhTable(i-1,j+1))) / firstElemUpperRow;
 end

 % special case: zero in the first column
 if rhTable(i,1) == 0
 rhTable(i,1) = epss;
 end
end
%% Compute number of right hand side poles(unstable poles)
% Initialize unstable poles with zero
unstablePoles = 0;
% Check change in signs
for i = 1:ceoffLength - 1
 if sign(rhTable(i,1)) * sign(rhTable(i+1,1)) == -1
 unstablePoles = unstablePoles + 1;
 end
end
% Print calculated data on screen

20

Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

fprintf('\n Routh-Hurwitz Table:\n')
rhTable
% Print the stability result on screen
if unstablePoles == 0
 fprintf('~~~~~> it is a stable system! <~~~~~\n')
else
 fprintf('~~~~~> it is an unstable system! <~~~~~\n')
end
 fprintf('\n Number of right hand side poles =%2.0f\n',unstablePoles)
​
Output:

input vector of your system coefficients: \n i.e. [an an-1 an-2 ... a0] = [1 2 3 4 5 6]

 Routh-Hurwitz Table:
rhTable =

 1.00000 3.00000 5.00000
 2.00000 4.00000 6.00000
 1.00000 2.00000 0.00000
 0.01000 6.00000 0.00000
 -598.00000 0.00000 0.00000
 6.00000 0.00000 0.00000

~~~~~> it is an unstable system! <~~~~~ 
Number of right hand side poles = 2​  
 
​ ​ ​ ​  

 

 

21 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 

​ ​ ​ ​  

 

 

 

 

 

 

 

 

 

Experiment – 7 

22 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Aim:     Analyze the stability of the given system using Root locus 

Code 1:  

pkg load control 
clc 
%sys = tf([2 5 1],[1 2 3]); 
 s = tf('s'); 
 g =1/(s-0); 
 sys = tf(g); 
rlocus(sys) 

 

 

​ ​ ​  

 

 

 

 

 

​  

 

 

 

 

 

 

 

 

 

 

Code 2: 

23 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

pkg load control 
clc 
s = tf('s'); 
g =(s+2)/(s^2+2*s+2)/(s^3+3*s^2); 
sys = tf(g); 
rlocus(sys) 

 

 

 

 

 

 

 

 

   

 

Code 3: 

24 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

pkg load control 
clc 
s = tf('s'); 
 g =(s+6)/(s+2)/(s^2+4*s); 
 sys = tf(g); 
rlocus(sys) 
 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

25 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Code 4: 

pkg load control 
clc 
%sys = tf([2 5 1],[1 2 3]); 
 s = tf('s'); 
g =10/(s^2+2*s)/(s^2+6*s+25); 
 sys = tf(g); 
rlocus(sys) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

26 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   
 

27 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experiment – 8 

28 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Aim:     Analyze the stability of the given system using Bode plots. 

Code 1: 
 

pkg load control 
clc 
 
% Define the transfer function 
s = tf('s'); 
g = 80/(s^2+2*s)/(s+20); 
% Specify the frequency range (1 Hz to 10^4 Hz) 
freq_range = {1, 10^4}; 
 
% Compute the Bode plot 
[bmag, bphase, bfreq] = bode(g, freq_range); 
 
% Convert frequency from rad/s to Hz 
bfreq_hz = bfreq / (2 * pi); 
 
% Plot the magnitude response 
subplot(2, 1, 1); 
semilogx(bfreq_hz, 20 * log10(bmag)); 
grid on; 
title('Bode Plot'); 
ylabel('Magnitude (dB)'); 
 
% Plot the phase response 
subplot(2, 1, 2); 
semilogx(bfreq_hz, bphase); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

29 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 
 
   
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Experiment – 9 

30 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Aim:     Implement frequency response of a lead lag compensator. 

Theory: A lead-lag compensator is a component in a control system that combines a lead compensator 

and a lag compensator to improve a system's frequency response. It's a fundamental building block in 

classical control theory and is used in a variety of disciplines, including robotics, satellite control, and 

automobile diagnostics. 

A lag lead compensator is a type of electrical network that generates phase lag as well as phase lead in the 

output signal at different frequencies when a steady-state sinusoidal input is provided to it. It is also 

known as lag lead network. 

In case of a lag lead compensator, the phase lead and phase lag occur at different frequency regions. 

Generally, at low-frequency phase lag characteristics is noticed in the output of the circuit. While at high 

frequency, we have phase lead characteristics. 

 

 

 

 

 

 

A lead-lag compensator combines the effects of a lead compensator with those of a lag compensator. The 

result is a system with improved transient response, stability, and steady-state error. To implement a 

lead-lag compensator, first design the lead compensator to achieve the desired transient response and 

stability, and then design a lag compensator to improve the steady-state response of the lead-compensated 

system. 

 

 

 

 

31 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Code : 

pkg load control 
clc 
 
% Define the transfer function 
num1=[2 3 1] 
den1=[2 4.5 1]; 
g=tf(num1, den1) 
% Specify the frequency range (1 Hz to 10^4 Hz) 
freq_range = {1, 10^4}; 
 
% Compute the Bode plot 
[bmag, bphase, bfreq] = bode(g, freq_range); 
 
% Convert frequency from rad/s to Hz 
bfreq_hz = bfreq / (2 * pi); 
 
% Plot the magnitude response 
subplot(2, 1, 1); 
semilogx(bfreq_hz, 20 * log10(bmag)); 
grid on; 
title('Bode Plot'); 
ylabel('Magnitude (dB)'); 
 
% Plot the phase response 
subplot(2, 1, 2); 

32 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

semilogx(bfreq_hz, bphase); 
grid on; 
xlabel('Frequency (Hz)'); 
ylabel('Phase (degrees)'); 
 
 

 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

33 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Experiment – 10 

Aim:  Analyze the stability of the given system using Nyquist plot. 

Code:  

pkg load control 
clc 
 
% Define the transfer function 
num1=[240] 
den1=[1 12 20 1]; 
g=tf(num1, den1) 
nyquist(g) 

 

 

 

 

 

 

 

34 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

  

35 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 
36 

 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Experiment – 11 

Aim:  Obtain the time response from state model of a system 

Code:  

pkg load control 
clc 
A = [-0.5 -0.5;0.333 0]; 
B = [0.5;0]; 
C = [0 1]; 
D = 0; 
sys = ss(A,B,C,D); 
step(sys) 

 

Output: 

                                                                                                     

sys.a = 
          x1     x2 
   x1   -0.5   -0.5 
   x2  0.333      0 
 
sys.b = 
        u1 
   x1  0.5 
   x2    0 
 
sys.c = 
       x1  x2 
   y1   0   1 
 
sys.d = 
       u1  
   y1   0 
 

 

 

 

 

 

37 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

38 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 

Experiment – 12 

Aim:  Implement PI and PD Controllers 

 

Code:   

pkg load control 
clf 
clc 
clear all 
kp=20; 
ki=50 
num1=[kp, ki]; 
den1=[1 0]; 
controller_tf = tf (num1, den1); 
num2=1; 
den2=[1 20 30]; 
plant_tf=tf(num2, den2); 
overall_tf=feedback(controller_tf*plant_tf, 1); 
t=0:0.01:2; 
step (overall_tf, t); 

 

 
   

 

 

 

 

 

 

 

 

 

39 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Code: 

pkg load control 
clf 
clc 
clear all 
kp=300; 
kd=10 
num1=[kd, kp]; 
den1=1; 
controller_tf = tf (num1, den1); 
num2=1; 
den2=[1 20 30]; 
plant_tf=tf(num2, den2); 
overall_tf=feedback(controller_tf*plant_tf, 
1); 
t=0:0.01:2; 
step (overall_tf, t); 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Sample Viva Questions 

40 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Q-1 What is frequency response?  

Ans:  A frequency response is the steady state response of a system when the input to the system 
is a sinusoidal signal.  

Q-2 List out the different frequency domain specifications?  

Ans:  The frequency domain specification are 1. Resonant peak. 2. Resonant frequency.  

Q-3 Define –resonant Peak? 

Ans: The maximum value of the magnitude of closed loop transfer function is called resonant 
peak.  

Q-4 Define –Resonant frequency?  

Ans: The frequency at which resonant peak occurs is called resonant frequency.  

Q-5 What is bandwidth?  

Ans: The bandwidth is the range of frequencies for which the system gain Is more than 3 dbB. 
The bandwidth is a measure of the ability of a feedback system to reproduce the input signal, 
noise rejection characteristics and rise time. 

 Q-6 Define Cut-off rate? 

 Ans: The slope of the log-magnitude curve near the cut-off is called cut-off rate. The cutoff rate 
indicates the ability to distinguish the signal from noise.  

Q-7 Define – Gain Margin? 

 Ans: The gain margin is defined as the reciprocal of the magnitude of the open loop transfer 
function at phase cross over frequency.  

Q-8 Define Phase cross over?  

Ans :The frequency at which, the phase of open loop transfer functions is called phase cross over 
frequency ωpc.  

Q-9 What is phase margin?  

Ans : The phase margin is the amount of phase lag at the gain cross over frequency required to 
bring system to the verge of instability. 

 

 

41 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 

 Q-10 What are the main significances of root locus?  

Ans: 

1. The main root locus technique is used for stability analysis.  

2. Using root locus technique the range of values of K, for as table system can be determined 

 Q-11 Define Gain cross over?  

Ans :The gain cross over frequency ωgc is the frequency at which the magnitude of the open 
loop transfer function is unity. 

Q-12 What is Bode plot?  

Ans: The Bode plot is the frequency response plot of the transfer function of a system. A Bode 
plot consists of two graphs. One is the plot of magnitude of sinusoidal transfer function versus 
log ω. The other is a plot of the phase angle of a sinusoidal function versus log ω.  

Q-13 What are the main advantages of Bode plot? 

 Ans: The main advantages are:  

1. Multiplication of magnitude can be in to addition.  

2. A simple method for sketching an approximate log curve is available.  

3. It is based on asymptotic approximation. Such approximation is sufficient if rough information 
on the frequency response characteristic is needed. 

 

Q-14 Define Corner frequency?  

Ans The frequency at which the two asymptotic meet in a magnitude plot is called corner 
frequency. Q- 

15 Define Phase lag and phase lead?  

Ans A negative phase angle is called phase lag. A positive phase angle is called phase lead.  

Q-16 What are M circles? 

 Ans The magnitude of closed loop transfer function with unit feedback can be shown to be in 
the for every value if M. These circles are called M circles.  

42 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

Q-17 What is Nichols chart? 

 Ans The chart consisting if M & N loci in the log magnitude versus phase diagram is called 
Nichols chart.  

 

Q-18 What are two contours of Nichols chart?  

Ans :Nichols chart of M and N contours, superimposed on ordinary graph. The M contours are 
the magnitude of closed loop system in decibels and the N contours are the phase angle locus of 
closed loop system. 

 Q-19 How is the Resonant Peak(Mr), resonant frequency(ωr) , and band width determined 
from Nichols chart?  

Ans :1. The resonant peak is given by the value of contour which is tangent to G(jω) locus. 

 2. The resonant frequency is given by the frequency of G(jω) at the tangency point. 3. iii) The 
bandwidth is given by frequency corresponding to the intersection point of G(jω) and –3dB 
M-contour. 

Q-20 What are the advantages of Nichols chart?  

Ans: The advantages are: 1. It is used to find the closed loop frequency response from open loop 
frequency response. 2. Frequency domain specifications can be determined from Nichols chart. 
3. The gain of the system can be adjusted to satisfy the given specification. 

 Q-21:What are the two types of compensation?  

Ans :1. Cascade or series compensation 2. Feedback compensation or parallel compensation  

Q-22 What are the three types of compensators?  

Ans: 1. Lag compensator 2. Lead compensator 3. Lag-Lead compensator  

Q-23 What are the uses of lead compensator? 

 Ans: 1. speeds up the transient response 2. increases the margin of stability of a system 3. 
Increases the system error constant to a limited extent.  

 

 

Q-24 What is the use of lag compensator? 

43 
 



Contro
l S

ys
te

m
 (B

EC
403) ,

EC
E,SJ

CIT

 

 Ans: Improve the steady state behaviour of a system, while nearly preserving its transient 
response. 

Q-25 What are the basic elements used for modelling mechanical rotational system?  

Ans: Moment of inertia J, dashpot with rotational frictional coefficient B and torsional spring 
with stiffness K 

44 
 


	What is Octave? 
	Who uses Octave? 
	Starting Octave 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Named variables 
	Getting help 
	Arrays and vectors 
	Plotting graphs 
	Improving the presentation 

	 

