
EIC simu decision input

 Fun4All g4e

Maturity Proven code base that’s been used to design a detector
coming under construction.
Synergy between experiments, taking advantage of 8
years of experience
100% of described functionality is implemented and in
active use.

It is impossible to compile outside of BNL

Even with the emailed instructions from developers (no
documentation?) No one was able to independently
compile fun4all

A mix of recent, new and not yet existing code.

One of Elke’s new EIC postdocs (Markus met him on
Friday), who has been working with his own standalone
G4 simu, assessed g4e and prepared these slides.
Their strong message comes from his assessment, not
any bias.
The postdoc is definitely out of context, disinformed and
biased because of this. Still, his proposal on the slide
#6 is exactly what was in the presentation in G4E
implementation. Basically in “Lumi monitor from the
software point of view” part of his presentations the
postdoc confirms, that G4E is what he needs for the
lumi monitor.

New development solely optimized for EIC.

P

User base Large existing user base performing detector and
physics studies. 30-40 people across 8 institutions
(listed below).
Incorporates many test beam analyses: easy to use for
verification of test beam data, feeds into more accurate
simu
How many of those users are EIC users?

JLab only?

G4E backend by developers serving software for Halls
A, B, C, D. Only the list of collaborating institutions will
be around 100. How this relates to EIC and Yellow
Pages users?

Collaborative contributions jleic detector implemented (between Jul & Sep)
jleic beam line magnets implemented (Nov)
geometry hierarchy implemented (between Jul & Sep)
Sep graphics issue promptly fixed
Oct questions on C++ G4 geom support addressed
EicRoot - Jana2 integrated (between Jul & Sep)
Which is a success of Jana2. Why it is mentioned as a
success of fun4all?

Little apparent activity between Jul and Sep?
Response to Sep agreement in favor of Fun4All was to
proceed with g4e, leading to Monday’s presentations
with no previous circulation of slides
True. But the question relates to the organization of the
meeting rather than to G4E

Contributing effort Quick effective response to feedback has been
demonstrated.
Can draw (to a certain degree) on new postdocs working
on EIC simu - same for G4E
Establishing how the code base will be organized for
collaborative development will be a priority

“Anticipated 20-30 developers to start committing to the
codebase”
How left and right relates? One can switch those
columns without any difference.

Generator input All event generators from eic-smear available via
generic eic-smear interface + sartre.
Pythia6/8 and sartre run inside process loop, no
separate running into some ascii file needed.
eic-smear is not opening HepMC files.

Particle gun, cone, LUND (Pythia6), HEPMC (Pythia8,
Herwig), BEAGLE
It ships universal file opener which can open any file
eic-smear reads and more. It is faster, highly
customizable, etc.

It is a good example to have extended explanation of
proposed and fun4all approaches

Pileup Multiple event sources can be used in parallel (needed
for pile up studies)
Embedding into existing hits files is supported

multiple text files can be read in parallel?
Yes. Done in Geant4 through
G4VUserPrimaryGeneratorAction calling multiple
generators.

Geant4 geometry hierarchy Implemented hierarchy under world volume in response
to our discussions.

Hierarchy under the world volume

Modular subdetector geometries Fully modular not modular not modular at all, pretty
highly coupled software that one can’t take apart and
used separately or use parts of it in other software so
easily. , supports geometries in G4 C++, ROOT macros,
GDML, …
Can do rapid prototyping in quick macros without writing
any code - macros ARE the code. Example! Moreover,
with very poor documentation, and implement full detail
in G4 C++.

G4 C++ based geometry.
1. As stated “is OK” in July meeting minutes.
​
2. Even now it ships VGM that allows also TGeo import
and others. Being close to raw Geant4 opens a
possibility to put DD4Hep or whatever community
solution for geo exchange.

https://drive.google.com/open?id=1_iIs4nj0BDGbK_tCOF4_kQb1JZED1qUb
https://github.com/sPHENIX-Collaboration/macros/blob/9df937abda4fbe4315a33154491ed53767580322/macros/g4simulations/G4_Svtx_maps_ladders%2Bintt_ladders%2Btpc_KalmanPatRec_EIC.C

Modules are flexibly composed into a full detector via
ROOT macro. A blob of macros with code and constants
referencing each other, which are hard to debug and
navigate. Very non modular and requiring knowing
Geant4 compiled part, ROOT but also poorly
documented fun4all “language”

Moreover heavy reliance on ROOT macros makes it
very difficult to fully integrate it with Jupyter and
python and is rather bad than good.

Here is an example

Large selection of mature detector implementations. Not
for EIC.

3. Defined interfaces allows to use different
technologies. E.G. Geant4 ships Python bindings. As a
proof of concept it was checked that it is possible to
create sub detectors in python and use it from C++. It
might be very useful for students and postdocs as well
as can be used in Jupyter tutorials.

4. Proof of concept on root macros is done too.

So there is actually a full spectrum of possibilities here.

Header files included into a giant #ifdef steered detector
construction.
It is JLEIC dedicated but not G4E issue and is being
fixed.

No generic detectors (cylinders/boxes/cones which can
be positioned at will in arbitrary numbers) what?
No GDML support. Up

SubDetectorInterface presented in the slides does not
exist - Those where screenshots on the slides.

while the functionality does exist in Fun4All - In terms of
there is also C++ inheritance used in Fun4All. In reality,
goals are different.

Geometry parameters Flexible easily modifiable params in ROOT macros, or
can bake into G4 C++ code if you choose. All is the
same C++ code and C++ programming just scattered
between compiled and dynamically invoked ROOT .C
macros part without any chance of clear separation of
logic and configuration. It is as “flexible” as an old C++
code. There is just nothing else. And disadvantages of
how it is done are written above.
Full persistency of parameters in output.

Another good example

Hard coded parameters in C++
No persistency of parameters in output

There is no one the best single option for this. All
options have a lot of compromises.
With G4E we have a very good chance to choose one,
that community finds best for EIC and current tasks.

Stepping action Detector specific stepping actions

A single stepping action serving all detectors. Unclear
this preserves all the functionality of using detector
specific stepping actions and leaving their appropriate
invocation to G4. Volumes are identified by name, cut
and paste detectors will likely collide

General stepping actions are not recommended for
physics and users as they should work on level of hits
and sensitive volumes. Each detector is recommended
to have its own SD processor.
Still there is a possibility to subscribe for a stepping
action for a dedicated detector or put your own stepping
action without interfering with other stepping actions.

Multithreading On the ToDo list, but not high, because not needed in
the near future. No memory issue.

SteppingAction does not look thread safe
EventAction is not thread safe

MC truth Full truth info available (every G4 hit can be traced back
to any of its parents, any parent can be tracked to
detector hits).
Full persistency of MC truth info.

Incomplete MC truth recording, and no output of MC
truth traceability

Physics lists easily modified via macro with no recompile
How many this saves and how often one changes the
lists on the fly?

can’t be changed on the fly without recompiling

If really a requirement it is doable via standard geant4
tools (messengers).

On my laptop:
Recompile time after changes - 17s
Recompile and run (no changes) - 2s
Root cold start with a single empty macro - 11s
Root start with a single empty macro - 2s

Simu output Supported, includes all config , simu and MC truth data.
Not opposed to have a module which writes whatever
output in whatever form is needed.

No uproot support. Very problematic for such tools.
Relies on C++ classes automatic IO which means it is
hard to have controllable specification.

Configs are given in strings with no documentations
like hcal->set_double_param("light_balance_outer_corr",
NAN); Those parameters are scattered between

Supported, simu and MC truth data.
Not opposed to have a module which writes whatever
output in whatever form is needed.

Because of clear code/configuration separation there is
no such hot problem of saving configs.

Flat trees with nice structure for uproot+python and root
DataFrame quick analysis.

https://github.com/sPHENIX-Collaboration/macros/blob/master/macros/g4simulations/G4_HcalOut_ref.C
https://github.com/sPHENIX-Collaboration/macros/blob/master/macros/g4simulations/Fun4All_G4_sPHENIX.C#L260

compiled C++ and macro C++ codes which are
scattered between 2 different repos.

Considering there are 2 ways to save different details in
G4E and one more in Geant4 itself.
It would be beneficial for the software group to come up
with event record and output specification.

Simu features Neutron flux can be "measured"
Geantino scans to verify detector positions
Black holes to find e.g. calorimeter leakage
Evaluators exist which you need to actually evaluate the
sims (how is this acceptance coming?)

Reconstruction. Thomas’s mandate was
for simulation framework ASAP, but the
needs don’t stop at simulation. And it is
now Nov, not July. In a few months we’ll
be in an intensive detailed
detector/physics study phase; reco will
be important. Monday’s presentations
put reco on the table, and it belongs
there as a point of comparison.

Mature support for full simu/reco chain Simu only
Reco is done in a separate package. Compared to
fun4all we have a modular stack of separated software.
JLEIC analysis where done with Genfit, Rave (same
used for fun4all) and FastJet.

Ejana not only have plugins for Genfit+Rave stack and
now Alexandar put EicRoot there, there are fast
simulation (eic-smear), python bindings and Jupyter
GUI presented on Paris meeting. It is just a separate
software so we didn’t discuss it during full simulation
topic.

There shouldn’t be a problem to read G4E output and
run through fun4all reco if it is modular, right?

Parameterization development Supports the full chain through reco that is required for
developing detector parameterizations for fast simu. eg.
Cannot parameterize tracking efficiency without
reconstructing tracks.

Supports user workflow oriented user experience with
support of Jupyter lab, python orchestrator etc.

Code QA very well debugged (valgrind, insure, coverity, scanbuild,
clang, cppcheck) fixed seed -> 100% reproducibility

How one debugs this? How well those tools
designed for enormous dynamic ROOT macroses
(which are also randomly load each other and
libraries on the fly) ?

valgrind reports 1.5mio errors for 2 events (that's not
unusual for new code but should be dealt with)
Gazillions of warnings during build
Thousands of lines of output on the screen

I’m not sure, what was examined and how it relates to
the proposed G4E for YP

User interfaces, front ends Jin Huang is integrating this into Jupyter, some test
beam analysis is in a Jupyter notebook, we will be able
to run hijing soon where we have to farm out the
processing.

Integrated with Jupyter
Initially developed with various integrations in mind.

packaging, dist/install, container
support, documentation, examples,
tutorials

email below https://g4e.readthedocs.io/en/latest/

Repository https://github.com/sPHENIX-Collaboration/Fun4All

Here are more
https://github.com/sPHENIX-Collaboration/coresoftware
https://github.com/sPHENIX-Collaboration/macros

Macros and compile parts are scattered between repos.
Very difficult to navigate. Impossible to take and build.

https://gitlab.com/jlab-eic/g4e/

Future path No desire or expectation to carry this framework into the
EIC era. It’s a pragmatic, mature tool to use for
immediate needs, freeing us to design/develop a new
framework as one team.

The described future is G4E reality.

Priority todo’s if selected Identify people to help with the top priorities (cf.
aforementioned EIC postdocs)
Establish how the code base will be organized for
collaborative development
Packaging, download/build/install/run, documentation,
examples, support

pink - Sergey Furletov
blue - Dmitry Romanov

Fun4All howto email

---------- Forwarded message ---------
From: pinkenburg <pinkenburg@bnl.gov>
Date: Mon, Oct 28, 2019 at 8:35 PM
Subject: Re: EIC Software meeting, October 28, 1:00 p.m. (EDT)

https://github.com/sPHENIX-Collaboration/macros/blob/9df937abda4fbe4315a33154491ed53767580322/macros/g4simulations/G4_Svtx_maps_ladders%2Bintt_ladders%2Btpc_KalmanPatRec_EIC.C
https://g4e.readthedocs.io/en/latest/
https://github.com/sPHENIX-Collaboration/Fun4All
https://github.com/sPHENIX-Collaboration/coresoftware
https://github.com/sPHENIX-Collaboration/macros
https://gitlab.com/jlab-eic/g4e/

To: Markus Diefenthaler <mdiefent@jlab.org>, Alexander Kiselev <kisselev@mail.desy.de>, Andrea Bressan <andrea.bressan@ts.infn.it>, David Lawrence
<davidl@jlab.org>, Dmitry Romanov <romanov@jlab.org>, Julia Furletova <yulia@jlab.org>, Kolja Kauder <kkauder@bnl.gov>, Makoto Asai
<asai@slac.stanford.edu>, Nathan Brei <nbrei@jlab.org>, Sylvester Johannes Joosten <sjoosten@anl.gov>, Torre Wenaus <wenaus@gmail.com>, Wouter
Deconinck <wdconinc@jlab.org>

Hi folks,

let me put this in front where everyone reads it. As Markus rightly pointed out - I have been working with this for a while and I am sure I forgot some important
details in the following. It should really work out of the box, let me (using this list) know if you get stuck. Here is the link I used to install cvmfs on my ubuntu
desktop: https://cernvm.cern.ch/portal/filesystem/quickstart

There are a few approaches one can take, the "easiest" is to follow
https://github.com/sPHENIX-Collaboration/Singularity
and download and run the updatebuild.sh
which creates local copies of our cvmfs volumes.

If you use cvmfs, I updated our cvmfs volume /cvmfs/sphenix.opensciencegrid.org which is visible on the OSG which should be accessible without keys. It
contains all 3rd party libs and a complete build of our software. If everything works according to plan doing for (t)csh:

source /cvmfs/sphenix.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/sphenix_setup.csh -n
for bash:

source /cvmfs/sphenix.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/sphenix_setup.sh -n

should set everything up to run (in our container). CentOS7 is close enough to SL7 and should work if the necessary system libraries are installed.

No matter what you do the next steps are:

Once this is functional you should be able to run our tutorials
git clone https://github.com/sPHENIX-Collaboration/tutorials.git

and the Fun4All_G4_*.C macros from
git clone https://github.com/sPHENIX-Collaboration/macros.git
(in the macros/macros/g4simulation subdir - the gleic Fun4All macro is in macros/macros/g4jleic)

If all of this works, the build script - convoluted perl, touch at your own risk :) in
git clone https://github.com/sPHENIX-Collaboration/utilities
(utilities/utils/rebuild). The setup script should set all its environment variables and with

./build.pl --workarea="<wherever you want to install it>"

it will create a "new" subdir in the workarea and you'll find the sources in the "new/install" subdir. Depending on the cpu - the build might take 2 hours, you can tail
the log new/rebuild.log to see where you are.

If you want to try your installation source the setup script as mentioned above for the initial environment, then do

export OFFLINE_MAIN=<wherever you want to install it>/new/install
export ONLINE_MAIN=<wherever you want to install it>/new/install

and source the setup script without -n. Your LD_LIBRARY_PATH (and PATH and ROOT_INCLUDE_PATH) should now point to your installation.

Last not least I attach the keys for the /cvmfs/sphenix.sdcc.bnl.gov volume mentioned in the singularity page which gives you access to a large variety of builds
(archived builds, new G4 version, debug build, gcc 8.3, whatever we feel like build) - sorry the insure builds needs a license only available when running at BNL.
But if needed I can copy those to the OSG volume (the OSG volume is meant for production, so the initial plan was to put stable production builds there but it's
up to us what we do with this). These files go (under ubuntu, no idea about MACs) under /etc/cvmfs in their respective subdirs:
/etc/cvmfs/keys/sdcc.bnl.gov/sphenix.sdcc.bnl.gov.pub
/etc/cvmfs/domain.d/sdcc.bnl.gov.local
/etc/cvmfs/config.d/sphenix.sdcc.bnl.gov.local

and now off to the kangaroos :)

Chris

Fun4all EIC institutes

Institutions actively working on spin and eic with Fun4All:
BNL
LANL
Glasgow
Stony Brook
Iowa State
U of Michigan
Georgia State
RIKEN

https://cernvm.cern.ch/portal/filesystem/quickstart
https://github.com/sPHENIX-Collaboration/Singularity
http://sphenix.opensciencegrid.org
http://sphenix.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/sphenix_setup.csh
http://sphenix.opensciencegrid.org/x8664_sl7/opt/sphenix/core/bin/sphenix_setup.sh
https://github.com/sPHENIX-Collaboration/tutorials.git
https://github.com/sPHENIX-Collaboration/macros.git
https://github.com/sPHENIX-Collaboration/utilities
http://build.pl
http://sphenix.sdcc.bnl.gov
http://sdcc.bnl.gov/sphenix.sdcc.bnl.gov.pub

	EIC simu decision input
	Fun4All howto email
	Fun4all EIC institutes

