UNIT 3: ENERGY AND RATES OF REACTION

1. Write each equation using ΔH notation and state if the reaction is exothermic or endothermic.

a)
$$SO_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow SO_{3(g)} + 38 \text{ kJ}$$

b)
$$Ca(OH)_{2(s)} + 64.9 \text{ kJ} \rightarrow H_2O_{(l)} + CaO_{(s)}$$

c)
$$6C_{(s)} + 3H_2O_{(l)} + 902 \text{ kJ} \rightarrow C_6H_{6(l)} + 3/2 O_{2(g)}$$

d)
$$N_{2(g)}$$
 + $3H_{29g)}$ \rightarrow $2NH_{3(g)}$ + 92 kJ

- 2. Heptane undergoes complete combustion with oxygen to produce carbon dioxide gas and water vapour.
 - a) Write a balanced equation for the reaction and predict the sign of ΔH .
 - b) Given the following information and the values on the back of your periodic table, calculate ΔH_{comb} using Hess'

Law:
$$7C_{(s)} + 8H_{2(g)} \rightarrow C_7H_{16(l)} \Delta H_f = +121 \text{ kJ/mol}$$

- c) How much energy would be released if 5.00 x 10² g of heptane undergoes combustion?
- 3. Sodium hydroxide undergoes an exothermic reaction when dissolving:

$$NaOH_{(s)} \rightarrow Na^{+}_{(aq)} + OH^{+}_{(aq)} + energy$$

When 40.8 g of sodium hydroxide was dissolved in 1.30 L of water, the temperature of the water increased by 46.0 °C. Calculate Δ H in kJ/mol.

4. Using the average bond energy values from the periodic table, calculate the enthalpy change for the following reaction:

$$C_2H_{4(g)} + 3O_{2(g)} \rightarrow 2CO_{2(g)} + 2H_2O_{(g)}$$

5. In the incomplete combustion of carbon, $C_{(s)}$, 74.0 g of oxygen gas reacts in 20.0 minutes. Calculate the rate of the reaction in terms of moles $CO_{(g)}$ produced per hour:

$$2C_{(s)} + O_{2(g)} \rightarrow 2CO_{(g)}$$

- 6. a) Sketch a potential energy diagram for this reaction and label it completely. Assume an initial P.E. value of 10 kJ/mol: A + B \rightarrow C Δ H = -25 kJ/mol; E_a = 70 kJ/mol
 - b) Using the graph determine the enthalpy change and activation energy for the reverse reaction.
- 7. Explain how a catalyst works to increase the rate of a reaction by describing:
 - a) its effect on the kinetic energy distribution curve (Boltzmann distribution)
 - b) its effect on the potential energy diagram of a chemical reaction.
 - c) Repeat this question to explain the effect of temperature on the rate of reaction.

8. Consider the following reaction:

$$\mathrm{KMnO_{4\,(aq)}} + \mathrm{H_2O_{2\,(aq)}} \rightarrow \mathrm{MnO_{2\,(aq)}} + \mathrm{KOH_{\,(aq)}} + \mathrm{H_2O_{\,(l)}} + \mathrm{O_{2\,(g)}} \ r = \Delta c_{\mathrm{O2}} / \Delta t$$

The initial rate of reaction was monitored by measuring the moles of oxygen produced per second and the following kinetic data collected.

Trial	[KMnO ₄] (mol/L)	[H ₂ O ₂] (mol/L)	Rate (mol/s)
1	0.001	0.004	0.003
2	0.002	0.004	0.012
3	0.003	0.004	0.027
4	0.004	0.001	0.002
5	0.004	0.002	0.016
6	0.004	0.003	0.054

- a) Determine the rate law equation for the reaction.
- b) What is the overall order of this reaction?
- c) By what factor would the reaction rate increase if both $[KMnO_4]$ and $[H_2O_2]$ were tripled at the same time?