

Design Document: Sortable and Performant
GET Tasks API

Overview
This design document outlines the plan to enhance the GET /v1/tasks/ API. The current
implementation suffers from a critical performance bottleneck: it loads the entire collection of tasks
from the database into memory and then performs pagination. This is not scalable. This refactor will
address this issue by moving both pagination and new sorting functionality to the database level,
ensuring the API is both performant and more feature-rich.​

Purpose and Goals
The primary purpose is to provide users with a more powerful and responsive way to view their tasks.

Primary Goal
●​ Implement robust, user-configurable sorting for the task list based on priority, dueAt,

createdAt, and assignee.

Issue Sortable and Performant GET Tasks API

Delivery Date TBD

Document Status Approved

Document & Feature
Owner

 Achintya Chatterjee

Reviewer Date Action

 Shobhan Sundar Goutam Jun 26, 2025 Approved

Anuj Chhikara Jun 29, 2025 Approved

Tejas July 01, 2025 Approved

mailto:achintyachatterjee.jara@gmail.com
mailto:ssgoutam2000@gmail.com
https://github.com/Real-Dev-Squad/todo-backend/issues/64

●​ Refactor the pagination mechanism to execute at the database level. This will prevent the
loading of the entire tasks collection into memory and fix the underlying performance issue.

Secondary Goal
●​ Ensure the new implementation is well-tested, maintainable, and that sorting and pagination

work together seamlessly.

Requirements
1. API Endpoint:

●​ The existing endpoint GET /v1/tasks/ will be enhanced.

2. Query Parameters:

●​ sort_by: Specifies the field to sort on.
○​ Allowed Values: priority, dueAt, createdAt, assignee.

●​ order: Specifies the sort direction.

○​ Allowed Values: asc (ascending), desc (descending).
​

3. Default Behaviour:

●​ If sort_by is not provided, the API will default to sorting by createdAt in desc order.
●​ If sort_by is provided but order is not, a sensible default order will be applied:

○​ createdAt: desc
○​ dueAt: asc
○​ priority: desc (High to Low)
○​ assignee: asc (Alphabetical)

4. Invalid Parameter Handling:

●​ If an invalid value is provided for sort_by or order, the API must return a 400 Bad Request
with a clear error message. (The existing GetTaskQueryParamsSerializer already handles
this correctly for page and limit.)

5. Database-Level Operations:

●​ To ensure optimal performance, sorting and pagination must be applied directly within the
database query.​
​
​
​
​
​

Flow Diagram

Proposed Solutions: Service-Oriented Implementation​

This solution refactors the existing endpoint to be performant and scalable while adding the
new sorting feature.​

Files to Create/Modify:​
​
1. Serializer (todo/serializers/get_tasks_serializer.py):
​

●​ The GetTaskQueryParamsSerializer will be modified to include sort_by and order fields.
serializers.ChoiceField will be used to validate against the allowed values, and default
values will be set to handle the default sorting requirement. This ensures invalid parameters
automatically trigger a 400 Bad Request.​

2. View (todo/views/task.py):​

●​ The get method in TaskListView will be updated to pass the newly validated sort_by and
order parameters from the serializer's validated_data to the TaskService. No other
significant change is needed here, as it already correctly uses
is_valid(raise_exception=True).
​

3. Service (TaskService):​

●​ The get_tasks method will be refactored to eliminate the in-memory pagination. It will no
longer call TaskRepository.get_all().

●​ It will now call two repository methods:
a.​ TaskRepository.list(page, limit, sort_by, order) to get the specific page of sorted

data.
b.​ TaskRepository.count() to get the total number of tasks for building the pagination

links.
●​ The logic to construct the LinksData will be based on the total count and the current

page/limit.

4. Repository (todo/repositories/task_repository.py):​

●​ The list method will be enhanced to accept sort_by and order as parameters. It will
dynamically construct the sort criteria and chain the .sort() method to the find() query before
applying .skip() and .limit().

●​ The get_all method will be deprecated for this flow.

Recommended Solution
The Service-Oriented Implementation described above is my recommended solution. It directly
addresses the critical performance issue while correctly implementing the new sorting feature within
the existing architecture. It improves scalability, maintainability, and API correctness by adhering to
best practices.

●​ Scalability: The API will now handle large datasets efficiently.
●​ Maintainability: Logic remains separated by layer (View, Service, Repository).
●​ Correctness: Sorting is applied to the entire dataset before pagination, which is the logically

correct way to implement this feature.

Implementation Strategy
1.​ Serializer: Update GetTaskQueryParamsSerializer to include and validate sort_by and

order.
2.​ Repository Layer: Refactor the TaskRepository.list method to apply sorting criteria before

pagination. Remove the get_all method.
3.​ Service Layer: Refactor the TaskService.get_tasks method to use the updated repository

methods and remove the in-memory pagination logic.
4.​ View Layer: Update TaskListView to pass the new, validated parameters from the serializer

to the service.
5.​ Database Performance and Indexing Strategy

To deliver on the performance goals, an indexing strategy is required. The aim is to prevent
slow, in-memory database sorts for the most critical API operations.
Essential Indexes for Core Functionality:
We will add two indexes to support the most important sorting operations:

●​ Default Sort Index (createdAt): The API defaults to sorting by createdAt. To prevent
a costly in-memory sort of the entire collection on every default API call, an index on
this field is required. Without it, the API will not be scalable.​
Command: db.tasks.createIndex({ "createdAt": -1 })

●​ Assignee Sort Index ($lookup): To sort by assignee name, a $lookup aggregation is
necessary. For this join to be performant, an index must be placed on the assignee
foreign key field in the tasks collection.​
Command: db.tasks.createIndex({ "assignee": 1 })

6.​ Testing: Write comprehensive unit and integration tests to verify that sorting and pagination
work correctly together for all supported fields and that invalid parameters return a 400 Bad
Request.

	Design Document: Sortable and Performant GET Tasks API
	
	Overview
	Purpose and Goals
	The primary purpose is to provide users with a more powerful and responsive way to view their tasks.
	Primary Goal
	Secondary Goal

	Requirements
	1. API Endpoint:
	2. Query Parameters:
	3. Default Behaviour:
	4. Invalid Parameter Handling:
	5. Database-Level Operations:
	●​ To ensure optimal performance, sorting and pagination must be applied directly within the database query.​​​​​​Flow Diagram

	
	Proposed Solutions: Service-Oriented Implementation​
	This solution refactors the existing endpoint to be performant and scalable while adding the new sorting feature.​
	Files to Create/Modify:​​1. Serializer (todo/serializers/get_tasks_serializer.py):
	​
	●​The GetTaskQueryParamsSerializer will be modified to include sort_by and order fields. serializers.ChoiceField will be used to validate against the allowed values, and default values will be set to handle the default sorting requirement. This ensures invalid parameters automatically trigger a 400 Bad Request.​
	2. View (todo/views/task.py):​
	3. Service (TaskService):​
	4. Repository (todo/repositories/task_repository.py):​

	Recommended Solution
	Implementation Strategy

