Today: Some classic simultaneous-move games

In what way(s) can you win this game?

GAME OF CHICKEN

ES DEAN

SWERVE DRIVE STRAIGHT BUZZ

	SWERVE	DRIVE STRAIGHT
	,	,
•	,	,

In what way(s) can you win this game?

STAG HUNT

BARNEY

HADE

2AT2

	STAU	HAKE
ì	,	,
E	,	,

Can cooperation be maintained?

THE PRISONERS' DILEMMA

MR. RED

,	,
,	,

Can cooperation ever be achieved?

Mini-handout: I do *not* expect you to memorize the following information, but I do want to make it clear that classic games like Battle of the Sexes, Chicken, Stag Hunt, and the Prisoners' Dilemma are different games because of differences in their payoff structures. When the games have symmetric payoffs, we can write them more generally as follows.

General payoff structure:

Player B

Player A	
----------	--

Up Down	
Down	

	Left	Right
Jp	a, a	b, c
/n	c, b	d, d

Special cases:

Battle of the Sexes:b > $c \ge a \ge d$

Chicken:c > a > b > d

Stag Hunt: $a > c \ge d > b$

Prisoners' Dilemma:c > a > d > b