Module 3 Review Notes

Question/Topic:	Room to work & Video:
Key Words, Postulates, & Theorems: Corresponding Parts Dilations Angle-Angle Similarity Postulate Similar Figures Side-Angle-Side Similarity Postulate Scale Model Side-Side-Side Similarity Postulate Scale Factor Triangle Proportionality Theorem Reduction Pythagorean Theorem Enlargement Pieces of Right Triangle Similarity Theorem	*Please be sure you know and understand the meaning of each word, postulate, or theorem. These can all be found in the note guides throughout Module 3.
Question 1:	Video: https://bit.ly/Mod3Reviewtoolbox Question1
y 14 13 12 11 10 9 8 7 6 5 4 3 2 1 1 1 1 1 1 1 1 1 1 1 1 1	□ 2 □ 3 □ 1/2 □ 1/3
Which scale factor was used to dilate triangle JKL from the origin to create triangle J'K'L'?	
Question 2:	Video: https://bit.ly/Mod3Reviewtoolbox_video2
A series of rigid transformations maps $\angle F$ onto $\angle C$ where $\angle F$ is congruent to $\angle C$. Determine if the following statement is true.	
segment BC ~ segment EF because corresponding parts of similar triangles are proportional	

Question 3:

GRPC is a parallelogram.

Part 1: Determine if triangles GBC and EBP are similar? Explain how you know.

Part 2: Find the distance from B to E and from P to E.

Video: http://bit.ly/Geo306-video9

Question 4:

A pool company is creating a blueprint for a family pool and a similar dog pool for a new client. If we translate EFGH so that point E of EFGH lies on point A of ABCD, then what statement explains how the company can determine whether pool ABCD is similar to pool EFGH?

Video: https://bit.ly/Mod3Reviewtoolbox video3

- ☐ dilate EFGH by the ratio segment EF over segment AB
- ☐ dilate EFGH by the ratio segment AB over segment EF

Question 5:

In the figure below, segment DE is parallel to segment BC and segment EF is parallel to AB. Use the theorem below to solve for Segments BD and BF.

Theorem: A line parallel to one side of a triangle divides the other two proportionately.

Video:

https://bit.ly/Module3Reviewtoolbox Video4

BD=

BF=

Question 6:

A Toy Company is creating two similar pieces for a board game, as shown below. How could the toy maker confirm that the pieces are similar using the definition of similarity in terms of similarity transformations?

Verify $\angle G \cong \angle J$ and $\angle I \cong \angle L$

- □ by reflection
- □ by dilation
- □ by translation

Video:

https://bit.ly/Module3Reviewtoolbox video5

Question 7:

Carla is using triangle similarity to prove the Pythagorean Theorem. In the triangle PQR, angle P is 90° and segment PS is perpendicular to segment QR.

Part 1: Find a pair of similar triangles and explain why they are similar.

Part 2: If RS = 2 and RQ = 18, find the length of segment RP.

Video: http://bit.ly/Geo306-video10

Question 8:

If \triangle DEF is dilated from point D by a scale factor of $\frac{1}{3}$, which of the following equations is true about $\overline{G'H'}$?

Video:

https://bit.ly/V22 Mod3ReviewToolbox video1

- $\Box \overline{G'H'} = \overline{GH}$
- $\Box \overline{G'H'} = 3\overline{GH}$
- $\Box \overline{G'H'} = \frac{1}{3}\overline{GH}$
- $\Box \overline{G'H'} = 2\overline{GH}$

*Geometry EOC Review:

Given the side lengths of the triangles, find the length of segment CD.

Video: https://bit.ly/Module3Reviewtoolbox_Video

**Honors only:

Triangle TUV and triangle ABC are shown in the graph.

Triangle TUV	Triangle ABC
T (16, 6)	A (-8, 3)
U (6, 6)	B (-3, 3)
V (10, -4)	C (-5, -2)

What two transformations would map triangle TUV to triangle ABC?

Video: https://bit.ly/V22 304 video6

