ECE241 Final Project
‘Astro Party’

Nicholas Tran 1005305251
Kyle Blackie 1004831113

December 2, 2019
ECE241
University of Toronto

Introduction

For the final project in our Digital Systems course, we designed a circuit implementing a two player game
where players control spaceships and try to hit each other with projectiles. Players controlled the
movement and shooting of their respective ship and the navigation of menu screens using the keyboard,
and each players’ score was displayed on the HEX displays. The first one to 5 eliminations won.

The motivation of this project was to showcase everything we learned in computing, storing, and
controlling digital circuits in this course. This manifested itself in creating a two player, arcade style game
that used these aspects of hardware design in a way that was both challenging and rewarding to complete.

The Design
Block Diagram illustrating the parts of the Project:

Hex
Dizplays

VGA Adapter

VGA -

Menitor

Astro Party
(Top Level Module)

Keys From User H P52 Kevboard Adapter

h

—
. Player 1 Ship Player 2 Ship Game Control Collision i - _—
Drawing FSM Control FSM | | Control FSM FSM Detection [¥ 7] Scorecounter Player 1 Player 2
Rocket Data Focket Data
4 + 4+ LR and Control and Control
Y A J h J Fy A
Drawing Player 1 Player 2
DataPath DataPath DataPath ¥ ¥
13
A Player 1 Player 2
Rocket Data Rocket Data
3

Memory Modules storing images of menu
screens, player 1 Ship. and player 2 Ship

Figure 1. Design Block Diagram

Game Control Finite State Machine (FSM)

The Game Control FSM controls what state the game is in. When the project is loaded, the FSM waits at
the menu state until ESC is pressed on the keyboard, moving into the play state, where it stays until a
winner is found. Once a winner is found, it moves to the newgame state, where it waits until ENTER is
pressed before moving back to the menu state, allowing the game to be played an infinite amount of
times. This FSM communicates with the drawing FSM to indicate what menu screen to draw and when
the Draw FSM can advance to its next states.

Drawing FSM
The Drawing FSM controls what object is being drawn to the VGA adapter at a certain time. Initially, this
FSM loads the menu screen into the VGA adapter. Once the Game Control FSM is in its play state, the

Drawing FSM loops through the steps of drawing, erasing, and updating objects by sending the relevant
enable signals to the Drawing, Ships, and Rocket Datapaths. The basic algorithm logic while the game
control FSM is in the play state is as follows:

Draw ships for Player 1, then Player 2 (Each ship is 19x19 pixels, or 289 pixels)

Draw Rockets for Player 1, then Player 2 (Each rocket is 3x3 pixels, or 9 pixels)

Delay so updates only happen at 60Hz

Erase Player 1 ship, then erase Player 2 ship

Erase Player 1 Rocket, then Player 2 Rocket

Update Registers

Go back to step 1

This loops until a winner has been detected, where the Drawing FSM sends a signal to the Display
Datapath to draw the correct winner screen to the VGA adapter.

Drawing Datapath

The Drawing Datapath holds all the data to draw objects to the VGA adapter depending on what enable
signal is being received. It receives enable signals from the Drawing FSM, and receives relevant XY and
orientation data from the Ship and Rocket datapaths. It also contains counters that keep track of the
number of pixels it has plotted during a certain Draw FSM state. This module retrieves the XY position of
the current object it is drawing, and the colour Data from a memory module, and maps out to the VGA
adapter a “frame” of the game before it is outputted to the screen.

Player 1 and Player 2 Ship Control FSM

The Player 1 Ship and Player 2 Ship Control FSMs are used to update the orientation of each respective
ship. Data from the keyboard is sent through the top level module, where the Ship Control FSMs check
the data for a relevant keypress (W for player 1, P for player 2). If one of those keypresses are detected,
the FSM sends an enable signal to the respective Ship Datapath, updating the orientation of the ship.

Player 1 and Player 2 Ship DataPath

Each ship datapath contains three registers. Two of them keep track of the XY position of the top left
pixel of the ship, and the third holds the orientation of the ship. A direction of 00 corresponds to north, 01
to East, 10 to South, and 11 to West. When an update signal is received from the Drawing FSM, the
datapath increments or decrements the xy position registers depending on the ships orientation, and
whether it is against a wall. When a rotate signal is received from the Ship’s Control FSM, the datapath
“rotates” the ship 90 degrees by adding 1 bit to its orientation register.

Player 1 and Player 2 Rocket Control FSM

The rocket control FSM is similar to the Ship Control FSM, where it checks the keyboard data for a
certain key press (Q for player 1, and O for player 2), and if it receives a relevant key press, it sends a fire
enable signal to the Rocket Datapath of that ship, signalling that the player wants to fire a rocket.

Player 1 and Player 2 Rocket Datapath
The rocket module keeps track of the X and Y position of a rocket and its orientation and whether there is
a rocket currently on the field from that ship.When a shoot enable signal is received from the Rocket

Control module, it checks if there is currently a projectile on the field from its ship. If there is, it will not
fire another shot. However, if there is not a projectile already on the field, it will update the state register
and output a starting X and Y position for the projectile based on the X and Y position of its ship.

Collision Detection

The collision detection module receives all XY position data from both Ship Data modules and both
Rocket modules. If a ship and a projectile, or ship and ship collide, their respective hitboxes overlap,
signalling a collision. If a player was hit by a projectile, a P1Hit or P2Hit signal is sent to the Drawing
FSM, starting a new round, and to the ScoreCounter module, where it increments the score of the player
who shot the other. If two ships collide, a new round starts, but no score is updated.

ScoreCounter

This module holds a counter for each player’s score. Each time a player is hit by a projectile, it increments
the counter of the player who shot the other player by two points, due to the hit enable signal being high
for two clock ticks. Once a player reaches 10 points (5 eliminations), the module sends a signal indicating
which player has won to the Drawing FSM, outputting a win screen to the VGA output.

Memory Modules

The memory modules initialize on chip memory using certain images. Each ship uses one module per
orientation, initialized with a 19x19 pixel picture converted to a Memory Initialization File. The menu and
win screens are also stored with memory modules, each holding a 160x120 pixel image - a quadrant of the
background. The memory modules output a 3 bit colour output given a certain memory address.

Vga and PS2 Adapter

Both the VGA and PS2 adapter code was taken from IP cores provided to us during the course [1], [2].
The VGA adapter takes X ,Y and 3 bit colour information from the Drawing Datapath, and plots a pixel
with that colour at that position on the screen when a writeEn signal is received from the Drawing FSM.

The PS2 adapter takes keystrokes from the keyboard and outputs an 8 bit signal referring to the last data
received from the PS2 bus, and a new data signal, which is driven high for one clock cycle whenever new
data is received. This data is used by the Ship Control, and the Game Control FSM modules to update
various aspects of the game.

Report on Success

The following outlines our weekly progress:

Week 1:

After working on understanding the logic behind drawing and erasing images to the VGA display we
managed to display the ships stored in mif files and eventually make them move across the screen using
the keys on the FPGA board.

Week 2:

The goal of this week was to implement a shooting mechanic for the ships. This was implemented
similarly to how the ships were drawn in week 1. The projectiles were instantiated in their own registers
with positions dependent on the ship and would then travel across the screen by being drawn and erased
like a ship would.

We also set a milestone to implement collision detection which was successfully met. The game would
now detect when a player’s projectile hit the opposing player’s ship and would score accordingly. We then
decided to add a new game mechanic where if the ships collided it would end the round as a draw. Bounds
were also added that prevented the ships from flying off screen.

Week 3:

For the final milestone the goal was to add more polish to the game. This was done by adding in different
game states (Menu, Play, Gameover) that were managed by a Finite State Machine and implementing
keyboard controls which gave the final game feel more complete when playing.

Parts that didn’t work:

While the project met all of the milestones there was still some issues with it. The main problem came
from some tearing that would occur on the ships. This was most likely due to reading and writing from
the VGA simultaneously and at high frequencies.

Overall, the project was a success. All of the initial goals were met on time and as a result the final
product was a complete two player space shooter game.

S Congratulations _A_
. V' Player2Wins!
.

© Astro "
" Party

; + . _
*— Press Esc to Start Game

¥

Press Enterto End Game |

*

What Would you do Differently

Given the chance to start this project over again there are several changes that would be made to better the
project.

1. Organise the Verilog modules better

Throughout development, the code was continuously getting updated as new features were added into the
project. However, when this code was added it was often done by stacking extra states and registers
throughout the existing code with less thought towards structure of the overall project. This caused the
code to lack some clarity which made the debugging process more difficult than it should have been.

2. Allow for multiple projectiles

In its current state, the game only allows for one projectile to be on the screen at a time per ship as this
was easier to program at the time. Given the chance to update this, we would try to allow for multiple
projectiles to be fired from each ship which would require multiple registers for each of the projectiles as
well as a frequency counter to control the rate of fire.

3. Add music and sound effects

The project as it is plays well however, adding in sound effects and background music would give the
project more of a finished feel. In order to achieve this we would have needed to schedule more time
towards working on getting audio to work as it proved more complex than we had initially thought.

References

[1] S. Vafaee, “Downloads,” VGA Adapter. [Online]. Available:
http://www.eecg.toronto.edu/~javar/ece241 08F/vga/vga-download.html. [Accessed:
01-Dec-2019].

[2] “PS/2 Controller,” PS/2 Controller. [Online]. Available:

http://www.eecg.toronto.edu/~pc/courses/241/DE1_SoC_cores/ps2/ps2.html. [Accessed:
01-Dec-2019].

Appendix:
Images Used:

Congratulations
Plaver 1'wins!

+

Presz Enter to End Game

+
cE

o to Start Game

-

¥

Congratulations

Plaver 2 Wins !

+

FPresz Enter to End Game

AN<EYL3-
AR

+

http://www.eecg.toronto.edu/~jayar/ece241_08F/vga/vga-download.html
http://www.eecg.toronto.edu/~pc/courses/241/DE1_SoC_cores/ps2/ps2.html

Code:
module AstroParty(

CLOCK 50, // On Board 50 MHz
// Your inputs and outputs here
KEY, SW, HEX0, HEXS, // On Board Inputs
// The ports below are for the VGA output. Do not change.
VGA_CLK, 1l VGA Clock
VGA_HS, !/l VGA H_SYNC
VGA VS, /l VGA V_SYNC
VGA BLANK N, / VGA BLANK
VGA_SYNC N, /l VGA SYNC
VGA R, /l VGA Red[9:0]
VGA_G, // VGA Green[9:0]
VGA_B, Il VGA Blue[9:0]
PS2 CLK, !/l PS2 Clock
PS2 DAT /l PS2 Data

);

input CLOCK 50; /l 50 MHz

input [3:0] KEY; // FPGA Keys

input [9:0] SW; Il FPGA Switches

//Bidirectionals

inout PS2 CLK;
inout PS2 DAT;

//Outputs

output [6:0] HEX0, HEXS;

output VGA CLK; // VGA Clock
output VGA_HS; // VGA H_SYNC
output VGA_VS; // VGA V_SYNC
output VGA BLANK N; /l VGA BLANK
output VGA SYNC N; / VGA SYNC
output [7:0] VGA _R; /l VGA Red[7:0]
output [7:0] VGA_G; // VGA Green[7:0]
output [7:0] VGA_B; // VGA Blue[7:0]

wire resetn;
assign resetn = SW[0];

//IVGA Related Wires
wire [2:0] colour;
wire [8:0] x;

wire [7:0] y;

wire writeEn;

//PS2 Related Wires
wire [7:0] keyData;
wire keyPressed,

//Ship Data and Control

wire [8:0] x1_pos, x2_pos;

wire [7:0] y1 pos, y2_pos;

wire [1:0] p1Orientation, p2Orientation;
wire plRotateEnable, p2RotateEnable;
wire fireshotl, fireshot2;

//Rocket Data and Control

wire [8:0] x_rktl, x_rkt2;

wire [7:0] y rktl,y rkt2;

wire [1:0] shot 1Orientation, shot 2Orientation;
wire shotInAirl, shotlnAir2;

//Drawing Control and Datapath Wires
//Counters

wire [8:0] dotCounter;

wire [17:0] blackCounter;

wire [24:0] freqCounter;

//Enable Signals

wire update, init, erase, 1d_pl, 1d p2,1d rktl, Id rkt2;
wire Id_plwin, Id_p2win, ld_menu;
//Reset Signals

wire countReset;

wire gameStart;

wire newRound;

wire [3:0] p1Score, p2Score;
wire plWin, p2Win;
wire shipsCollide;

//Game Control FSM Wires

wire playGame, menuScreen, newGame;

//Module Instantiation

vga_adapter VGA(
.resetn(resetn),
.clock(CLOCK_50),
.colour(colour),
X(x),
Y,
.plot(writeEn),
.VGA_R(VGA R),
.VGA G(VGA_G),
.VGA B(VGA_B),
.VGA_HS(VGA_HS),
.VGA_VS(VGA_VYS),

VGA_BLANK(VGA_BLANK_N),

VGA_SYNC(VGA_SYNC N),
VGA_CLK(VGA_CLK));

// x position of both ships
/'y position of both ships

// Orientation, 00 = North, 01 = East, 10= South, 11= West

// Enable signal to rotate ship
// Enable signal to fire shot

// x position of both rockets
//'y position of both rockets

// shot orientation, same as ship orientation (00 = North...)

// State if shot is in air

// Counter to draw and erase ships and rockets
// Counter for background images
// Delay so update only happens at 60Hz

// Main enable signals for drawing
// Menu Screens

//Resets counters
//Enable signal to start game
//Enable signal for new round

//Count score for respective ship
// Signal indicated p1 or p2 has won
//Signal for if ships collide with each other

defparam VGA.RESOLUTION = "320x240";
defparam VGA.MONOCHROME = "FALSE";
defparam VGA.BITS PER_ COLOUR_CHANNEL = I;
defparam VGA.BACKGROUND_IMAGE = "/Images/black.mif";
PS2_Controller ps2(//Keyboard input output module
.CLOCK_50(CLOCK_50),
.reset(~resetn),
PS2_CLK(PS2_CLK),
.PS2_DAT(PS2_DAT),
.received_data(keyData),
received data_en(keyPressed));

gameControl gameFSM (//Game State FSM
.clock(CLOCK_50),
.reset(resetn),
keyCode(keyData),
.newCode(keyPressed),
.p1Win(p1Win),
.p2Win(p2Win),
.gamePlay(playGame),
.menuScreen(menuScreen),
.newGame(newGame));

gamedelay delay3(//Delays movement of ships when new round starts by 1s
.clock(CLOCK _50),
.reset(resetn),
.countReset(countReset),
.newGame(newGame),
.enable(gameStart),
.init(init),

.newRound(newRound));

controll Ship1Ctrl(//Ship 1 Control FSM
.clock(CLOCK_50),
.reset(resetn),
keyCode(keyData),
.newCode(keyPressed),
.countenable(p1RotateEnable));

plData ship1Data(// Ship 1 Datapath
.clock(CLOCK _50),
.reset(resetn),
.rotate(p1RotateEnable),
.update(update),
.init(init),
x(x1_pos),
-y(y1l_pos),
.p1Orientation(p1Orientation));

control2 Ship2Ctrl(
.clock(CLOCK _50),
.reset(resetn),
keyCode(keyData),
.newCode(keyPressed),
.countenable(p2RotateEnable));

p2Data ship2Data(
.clock(CLOCK_50),
reset(resetn),
.rotate(p2RotateEnable),
.update(update),
.nit(init),
X(x2_pos),
-y(y2_pos),
.p20rientation(p2Orientation));

shotControll ShotShip1(
.clock(CLOCK_50),
.reset(resetn),
keyCode(keyData),
.newCode(keyPressed),
.shotEnable(fireshot1));

rocket rkt1(
.clock(CLOCK _50),
.reset(resetn),
.shotInAir(shotInAirl),
.update(update),
.init(init),
fireShot(fireshotl),
.orientation(p1Orientation),
.ship_x(x1_pos),
.ship_y(y1_pos),
x_shot(x_rktl),
.y_shot(y_rktl),

.shot_orientation(shot_1Orientation),

.x_rocket(x_rkt2),
.y_rocket(y_rkt2));

shotControl2 ShotShip2(
.clock(CLOCK_50),
.reset(resetn),
keyCode(keyData),
.newCode(keyPressed),
.shotEnable(fireshot2));

rocket rkt2(
.clock(CLOCK _50),

//Ship 2 Control FSM

// Ship 2 Datapath

//Ship 1 Rocket FSM

//Ship 1 Rocket Datapath

//Opponents rocket x
//Opponents rocket y

//Ship 2 Rocket FSM

10

.reset(resetn),
.shotInAir(shotInAir2),
.update(update),

.init(init),
fireShot(fireshot2),
.orientation(p2Orientation),
.ship_x(x2_pos),
.ship_y(y2_pos),
x_shot(x_rkt2),
.y_shot(y_rkt2),
.shot_orientation(shot 2Orientation),

x_rocket(x_rktl), //Opponent rocket x

.y_rocket(y_rktl)); //Opponent rocket y
collision collisionDetect (//Collision Tracker

.clock(CLOCK_50),

.reset(resetn),

.init(init),

x1_pos(x1 _pos),

X2 _pos(x2_pos),
-y1_pos(yl_pos),
-y2_pos(y2_pos),
x1shot(x_rktl),
x2shot(x_rkt2),
.ylshot(y_rktl),
.y2shot(y_rkt2),
.p1Hit(p1Hit),
.p2Hit(p2Hit),
.shipsCollide(shipsCollide),
.shotInAirl(shotInAirl),
.shotInAir2(shotlnAir2));

scoreCounter scores(//Keeps track of scores
.clock(CLOCK_50),
.reset(resetn),
.newGame(newGame),
.plHit(p1Hit),
.p2Hit(p2Hit),
.scoreP1(p1Score),
.scoreP2(p2Score),
.p1Win(p1 Win),
.p2Win(p2Win));

displayCtrl disp1(//Display FSM
.clock(CLOCK_50),
.reset(resetn),
.shotInAir1(shotlnAirl),
.shotInAir2(shotInAir2),
.dotCounter(dotCounter),

.blackCounter(blackCounter),
.freqCounter(freqCounter),
.p1Hit(p1Hit),
.p2Hit(p2Hit),
.newGame(newGame),
.shipsCollide(shipsCollide),
.playGame(playGame),
.menuScreen(menuScreen),
.p1Win(p1Win),
.p2Win(p2Win),
.gameStart(gameStart),
d_plot(writeEn),
.erase(erase),
.update(update),
.newRound(newRound),
.init(init),

dd_pldd pl),
1d_p2(ld_p2),
dd_rkt1(ld_rktl),
d_rkt2(1d_rkt2),
.countReset(countReset),
1d_menu(ld_menu),
1d_plwin(ld_plwin),
1d_p2win(ld_p2win),);

displayData datal(
.clock(CLOCK_50),
.reset(resetn),
.erase(erase),
.init(init),
1d_plot(writeEn),
.countReset(countReset),
X_posl(xl_pos),
Adrkt1(ld_rktl),
Ad_rkt2(1d_rkt2),
Ad_pldd pl),
d_p2(ld_p2),
1d_menu(ld_menu),
1d_plwin(ld_plwin),
1d_p2win(ld_p2win),
.y_pos1(yl_pos),
X_pos2(x2_pos),
.Y_pos2(y2_pos),
.p1Orientation(p10rientation),
.p20rientation(p2Orientation),
x_rktl(x_rktl),
x_rkt2(x_rkt2),
.y_rktl(y_rktl),
.y_rkt2(y_rkt2),
.rkt1Orientation(shot _1Orientation),

.rkt2Orientation(shot_2Orientation),
X_vga(x),

y_vga(y),

.colour_out(colour),
.dotCounter(dotCounter),
freqCounter(freqCounter),
.blackCounter(blackCounter));

seg7 u2 (.i(p2Score), .hex(HEX0));
seg7 ul (.i(p1Score), .hex(HEXY));
endmodule

//Game Control FSM
module gameControl(
input clock, reset,
input [7:0] keyCode,
input newCode,
input p1Win, p2Win,
output reg gamePlay, menuScreen, newGame);

reg [3:0] current_state, next_state;

localparam S_MENU =4'd0,
S PLAY =4'dl,
S NEWGAME =4'd2;

//State Table
always@(*)
begin
case(current_state)
//Loops until ESC is pressed
S _MENU: next_state = (newCode && keyCode == 8'h76)? S PLAY: S MENU;
//Loops until a winner is found
S PLAY: next_state = (p1Win || p2Win)? S NEWGAME: S PLAY;
//Loops until Enter is pressed, then return to menu state
S NEWGAME: next_state = (newCode && keyCode == 8'h5A)? S MENU: S NEWGAME;
default: next state=S MENU;
endcase
end

//State Registers
always@(*)

begin

menuScreen =1'b0;
gamePlay =1'b0;
newGame =1'b0;

case(current_state)
S _MENU: begin

menuScreen = 1'bl;
end
S PLAY: begin
gamePlay= 1'b1;
end
S NEWGAME: begin
newGame = 1'bl;
end
endcase
end

//State transitions
always@(posedge clock)

begin
if(!reset)
current_state <= S_MENU;
else
current_state <= next_state;
end
endmodule
//Game Delay Module

module gamedelay(
input clock,
input reset,
input countReset, newRound, init,
input newGame,
output reg enable);

reg [30:0] counter;

always@(posedge clock)
begin
if (!reset || newGame || newRound)
begin
counter <= 31'd0;
enable <= 0;
end
else
begin
if (counter == 31'd49999999)
begin
enable <= 1;
counter <= 31'b0;
end
else
begin
counter <= counter + 1;
enable <= 0;

//Reset the counters

//If counted for one second, send enable

//Count up

14

end
end
end
endmodule

//Ship 1 Control FSM
module controll(
input clock,
input reset,
input [7:0] keyCode,
input newCode,
output reg countenable);

reg [3:0] current_state, next_state;

localparam S'1 =4'd0,
S 2 =4'dl,
S 3 =4'd2,
S 4 =4'd3,
S 5 =4'd4,

//State Table

always@(*)

begin

case(current_state)
//Loop until W is pressed
S 1:next state = (newCode && keyCode == 8'h1D)? S 2: S 1;
S 2:next state=S 3;//Send enable signal
//Loop until break code is received
S 3:next state = (newCode && keyCode == 8'hF0)? S 4: S 3;
//Loop until W is sent again (from releasing the key)
S 4:next_state = (newCode && keyCode == 8'h1D)? S 5: S 4;
S 5:next state = (InewCode)? S_1: S _5; //No new data
default: next state=S 1;
endcase
end

//State Registers
always@(*)

begin

countenable <= 1'b0;
case(current_state)

S_2: begin
countenable <= 1'bl;
end

endcase

end

//State Transitions
always@(posedge clock)

begin
if(!reset)
current_state <=S_1;
else
current_state <= next_state;
end
endmodule

//Player 1 Ship Datapath
module p1Data (
input clock,
input reset,
input rotate, update, init,
output reg [8:0] x,
output reg [7:0] y,
output reg [1:0] p1Orientation);

always@)(posedge clock)

begin

if (!reset || init)
begin
x <=9'd5;
y <=8'd103;
plOrientation <=2'b01;
end

if(rotate)
begin
if (p1Orientation == 2'b11)
plOrientation <= 2'b0;

else
plOrientation <= p1Orientation + 1'b1;
end
if (update)
begin
if (p1Orientation == 2'b00)
begin
//top bound
if(y !=8'd3)
begin
y<=y-1bl;
end
end
else if (p1Orientation == 2'b01)
begin
// right bound
if(x 1=9'd300)
begin
x <=x+ 1'bl;

//Resetting the registers

//Starting X pos
//Starting y pos
//Starting orientation

//Rotate the ship

//Increment or Decrement Position

//Ship facing North

//Ship facing East

16

end
endmodule

end

end
else if(p1Orientation == 2'b10)
begin
// bottom bound
if(y 1= 8'd221)
begin
y<=y+1bl;
end
end
else begin
// left bound
if(x !=9'd3)
begin
X <=x-1Dl;
end
end

end

//Ship 2 Control FSM

module control2(

input clock,

input reset,
input [7:0] keyCode,
input newCode,

output reg countenable);

reg [3:0] current_state, next_state;

localparam S1 =4'd0,
S2 =4'dl,
S_3 =4'd2,
S 4 =4'd3,
S 5 =4'd4;

always@(*)

begin

case(current_state)

end

//Loop until P is pressed

//Ship facing South

//Ship facing West

S 1:next state = (newCode && keyCode == 8'h4D)? S 2: S 1;

S 2:next state =S _3; //Send enable signal
//Loop until break code is received

S 3:next state = (newCode && keyCode == 8'hF0)? S 4: S 3;
//Loop until P is sent again (from releasing the key)

S 4:next state = (newCode && keyCode == 8'h4D)? S 5: S 4;
S 5:next state = (InewCode)? S_1: S_5; //No new data

default: next state=S 1;
endcase

17

always@(*)
begin
countenable <= 1'b0;

case(current_state)

S 2: begin
countenable <= 1'b1;
end

endcase

end

always@(posedge clock)

begin
if(!reset)
current_state <= S _1;
else
current_state <= next_state;
end
endmodule

//Player 2 Ship Datapath
module p2Data (
input clock,
input reset,
input rotate, update, init,
output reg [8:0] x,
output reg [7:0] y,
output reg [1:0] p2Orientation);

always@)(posedge clock)

begin
if (Ireset || init) //Resetting Registers
begin
x <=9'd300; // Starting X pos
y <=8'd103; // Starting y pos
p20rientation <=2'b11; //Starting orientation: west
end
if(rotate) //Rotate enable signal was received
begin
if (p2O0rientation == 2'b11) //1f facing west, reset so facing north
p2O0rientation <= 2'b0;
else
p2O0rientation <= p2Orientation + 1'b1; //Rotate
end
if (update) //Increnting / Decrementing register
begin

if (p2O0rientation == 2'b00)

18

begin

//top bound
if(y 1= 8'd3)
begin
y<=y-1bl;
end
end
else if(p2O0rientation == 2'b01)
begin
// right bound
if(x !=9'd300)
begin
x<=x+1bl;
end
end
else if(p2O0rientation == 2'b10)
begin
// bottom bound
if(y 1= 8'd221)
begin
y<=y+1bl;
end
end
else
begin
// left bound
if(x 1=9'd3)
begin
x<=x-1Dl;
end
end
end
end
endmodule

//Player 1 Rocket FSM
module shotControl1(
input clock,
input reset,
input [7:0] keyCode,
input newCode,
output reg shotEnable);

reg [3:0] current_state, next_state;

localparam S1 =4'd0,
S 2 =4dl,
S 3 =4'd2,
S 4 =4'd3,
S5 =4'd4,
//State Table

19

always@(*)

begin

case(current_state)
//Loop until Q is pressed
S 1:next state = (newCode && keyCode == 8'h15)? S 2: S 1;
S 2:next state =S 3;//Send enable signal
//Loop until break code is detected
S 3:next state = (newCode && keyCode == 8'hF0)? S 4: S 3;
//Loop until release confirms Q was released
S 4:next_state = (newCode && keyCode == 8'h15)? S 5: S 4;
S 5:next_state = (InewCode)? S_1: S _5; //No new Codes, return to start
default: next_state=S_1;
endcase

end

//State registers

always@(*)
begin
shotEnable <= 1'b0;

case(current_state)

S 2: begin
shotEnable <= 1'bl;
end
endcase
end

//State Transitions
always@(posedge clock)

begin
if(!reset)
current_state <= S _1;
else
current_state <= next_state;
end
endmodule
//Player 2 Rocket FSM

module shotControl2(
input clock,
input reset,
input [7:0] keyCode,
input newCode,
output reg shotEnable);

reg [3:0] current_state, next_state;

localparam S1 =4'd0,
S2 =4'dl,
S_3 =4'd2,

S4 =43,

S5 =444

//State Table

always@(*)

begin

case(current_state)
//Loop until O is pressed
S 1:next_state = (newCode && keyCode == 8'h44)? S 2: S 1;
S 2:next state =S _3; //Send enable signal to rocket datapath

//Loop until break code
S 3:next_state = (newCode && keyCode == 8'hF0)? S 4: S 3;
//0 is released

S 4:next state = (newCode && keyCode == 8'h44)? S 5: S 4;
S 5:next state = (InewCode)? S 1: S _5; //No new Codes

default: next state=S 1;
endcase
end

//State Registers

always@(*)
begin
shotEnable <= 1'b0;

case(current_state)

S_2: begin
shotEnable <= 1'b1;
end
endcase
end

//State Transitions
always@)(posedge clock)
begin
if(!reset)
current_state <=S_1;
else
current_state <= next_state;
end
endmodule

//Rocket Datapath
module rocket(
input clock,
input reset, init,
input update,
input fireShot,
input [1:0] orientation,
input [8:0] ship_x, x_rocket,
input [7:0] ship_y, y_rocket,

//Orientation of ship
//XY position of ship
//XY Position of opponent rocket

21

output reg [8:0] x_shot,

output reg [7:0] y_shot,

output reg [1:0] shot_orientation,
output reg shotlnAir);

always@(posedge clock)
begin

//XY position of own shot

//Orientation of own shot
//State is theres a shot in the air

if (reset || init) //Resetting Registers

begin
x_shot <= 9'b0;
y_shot <= 8'd3;
shotInAir <= 0;
end
else
begin
if (!shotlnAir && fireShot)
begin
shotlnAir <= 1'b1;
if (orientation == 2'b00)
begin
x_shot <= ship_x + 4'd8;
y_shot <=ship_y - 2'd3;
shot_orientation <= 2'b00;
end
else if (orientation == 2'b01)
begin
x_shot <= ship x + 6'd18;
y_shot <= ship y +4'd7,
shot_orientation <= 2'b01;
end
else if (orientation == 2'b10)
begin
x_shot <= ship_x + 4'd8;
y_shot <=ship y + 6'd18;
shot_orientation <= 2'b10;

end

else
begin
x_shot <= ship_x - 2'd3;
y_shot <= ship_y + 4'd7,;
shot_orientation <=2'b11;
end

end

if (update && shotInAir)
begin

//If no shot on field and receives enable

//If players ship is facing North

//Starting position of rocket

//Orientation of rocket

//Ship facing East

//Ship facing South

//Ship facing west

//Update signal from Draw FSM

/[First check if the two shots have collided with each other
if ((x_shot >=x_rocket && x_shot <= x_rocket + 8'd2 && y shot >=y rocket && y_shot <=
y_rocket + 8'd2) || (x_shot+8'd2 >=x_rocket && x_shot+8'd2<=x_rocket+8'd2 && y_shot >=y rocket && y_shot <=y _rocket

22

+ 8'd2) || (x_shot >=x_rocket && x_shot <=x_rocket + 8'd2 && y_shot+8'd2 >=y rocket && y_shot <=y rocket+8'd2) ||
(x_shot+8'd2 >=x_rocket && x_shot+8'd2<=x_rocket+8'd2 && y_shot+8'd2 >=y rocket && y_shot <=y rocket+8'd2))

shotlnAir <= 0;

//Shots cancel out, no more shots on field

//No collision with shots, update registers
if (shot_orientation <= 2'b00) //Shot moving North

else if (shot_orientation <=2'd01)

else if(shot_orientation <=2'b10)

else

end
end
end
endmodule

//Collision Detection
module collision(
input clock,
input reset, init,

begin

if (y_shot <=2'd1)
shotInAir <= 0;
else
y_shot <=y shot -2;
end
//Shot moving East
begin
if(x_shot >=10'd319)
shotInAir <= 0;
else
x_shot <=x_shot + 2;
end
//Shot moving south
begin
if(y_shot >=9'd239)
shotInAir <= 0;

input shotlnAirl, shotlnAir2,

input [9:0] x1_pos, x2_pos,

input [8:0] y1 pos, y2 pos,

input [9:0] x1shot, x2shot,

input [8:0] ylshot, y2shot,

output reg plHit, p2Hit, shipsCollide);

always@)(posedge clock)
begin

else
y_shot <=y shot +2;
end
//Shot moving West
begin
if(x_shot <=2'd1)
shotInAir <= 0;
else
x_shot <=x_shot - 2;
end
//X position of ships
/IY position of ships

//X position of rockets
/IY position of rockets
//Output signals

23

if (Ireset || init) //Reset registers

else

&& shotlnAirl)

&& shotlnAir2)

8'd15) ||

y1 _pos +8'd15) ||

y1_pos+8'd15) ||

y1 pos+8'd15))

end
endmodule

begin

plHit <= 0;

p2Hit <= 0;

shipsCollide <= 0;

end

begin

//If player 2 is hit by player 1 rocket

if (x1shot >=x2 pos && x1shot <=x2 pos + 8'd17) && (ylshot >=y2 pos && ylshot <=y2 pos + 8'd17)
p2Hit <=1,

//If player 1 is hit by player 2 rocket
if ((x2shot >=x1_pos && x2shot <=x1_pos + 8'd17) && (y2shot >=yl pos && y2shot <=yl pos + 8'd17)

plHit <=1;

//1f ships collide with each other
if (x2_pos >=x1_pos && x2_pos <=x1 pos + 8'd15 && y2 pos >=yl pos && y2 pos <=yl pos+

(x2_pos+8'd15 >=x1_pos && x2 pos+8'd15<=x1 pos+8'dl5 && y2 pos >=yl pos && y2 pos <=
(x2_pos >=x1_pos && x2_pos <=x1_pos + 8'd15 && y2_pos+8'd15 >=yl pos && y2 pos <=
(x2_pos+8'd15 >=x1_pos && x2_post8'd15<=x1_post8'd15 && y2 pos+8'd15 >=yl pos && y2 pos <=

shipsCollide <= 1;
end

//ScoreCounter module

module scoreCounter(

input clock,

input reset,

input newGame,

input p1Hit,

input p2Hit,

output reg [3:0] scoreP1, scoreP2,

output reg p1 Win, p2Win);

always@(posedge clock)

begin

if (!reset || newGame || p1 Win || p2Win) //1f reset or a newGame is starting

begin

scoreP1 <=4'b0;
scoreP2 <=4'b0;
p1Win <= 1'00;
p2Win <= 1'b0;

24

end

else
begin
if (scoreP1 == 4'd10) //Check if P1 has reached 10 points
begin
plWin <=1'bl; //P1 Wins
end
else if(scoreP2 == 4'd10) //Check if P2 has reached 10 points
begin
p2Win <= 1'b1; //P2 Wins
end
else //No winner, update the scores
begin
if (p1Hit) //Player 1 hit by rocket
scoreP2 <=scoreP2 + 1'bl; //Increment player 2 score
if (p2Hit) //Player 2 hit by rocket
scoreP1 <=scoreP1 + 1'b1; //Increment player 1 score
end
end
end
endmodule
//Display Control FSM
module displayCtrl (

input clock,

input reset,

input p1Hit, p2Hit, newGame, shipsCollide, shotInAirl, shotInAir2, gameStart, playGame,
input p1Win, p2Win, menuScreen,

input [9:0] dotCounter,

input [17:0] blackCounter,

input [24:0] freqCounter,

output reg 1d_plot, erase, update, init, Id p1,1d p2,1d rktl, Id rkt2,

output reg newRound, countReset, ld menu, 1d plwin, 1d_p2win);

reg [4:0] current_state, next_state;

localparam S MENU =5'd0,
S_INIT =5'dl,
S_WAIT =5'd2,
S DRAWPI =5'd3,
S_COUNTRESET]I =5'd4,
S DRAWP2 =5'ds,
S_COUNTRESET2 = 5'd6,
S_DRAWRKT1 =5'd7,
S_COUNTRESET3 =5'dg,
S_DRAWRKT2 =5'd9,
S_COUNTRESET4 =5'd10,
S _DRAW_WAIT =5'dll,

S _ERASEP1 =5'd12,

S_COUNTRESETS5 =5'd13,

S _ERASEP2 =5'd14,
S_COUNTRESET6 =5'd15,
S ERASERKTI1 =5'dle,
S_COUNTRESET7? =5'd17,
S_ERASERKT2 =5'd18,
S_UPDATE =5'd19,
S _PIWIN = 5'd20,
S P2WIN =5'd21,
S_COUNTRESETS8 =5'd22,
S_COUNTRESET9 =5'd23;

always@(*)
begin: state_table

case(current_state)

endcase
end

//State Registers
always@(*)

S_MENU: next_state = (blackCounter <= 18'd76799)? S MENU: S_COUNTRESETY;
S_INIT: next_state = (blackCounter <= 18'd76799)? S_INIT: S_WAIT; //Draw Background
S WAIT: next_state = gameStart? S DRAWP1: S WAIT,; //Delay for 1 s
S_DRAWPI: next_state = (dotCounter <= 10'b0100100000)? S_ DRAWP1: S_COUNTRESETI; /Draw P1

S COUNTRESETI!: next state=S DRAWP2; //Reset Counters

S DRAWP2: next_state= (dotCounter <= 10'b0100100000)? S DRAWP2: S COUNTRESET2; //Draw P2

S COUNTRESET2: next_state = (shotlnAirl)? S DRAWRKT1: S COUNTRESET3; //Reset Counters

S DRAWRKTI: next_state = (dotCounter <= 10'd8)? S DRAWRKT1: S COUNTRESET3; //Draw P1 RKT
S_COUNTRESET3: next_state = (shotlnAir2)? S_ DRAWRKT2: S_ COUNTRESET4; //Reset Counters

S _DRAWRKT2: next_state = (dotCounter <= 10'd8)? S_ DRAWRKT2: S COUNTRESET4; //Draw P2 RKT
S _COUNTRESET4: next_state =S DRAW_WAIT; //Reset Counters

S DRAW_WAIT: next_state = (freqCounter < 25'd833333)? S DRAW_WAIT: S_ERASEP1; //Delay 60Hz
S_ERASEPI1: next_state = (dotCounter <= 10'b60100100000)? S_ERASEP1 : S_ COUNTRESETS; //Erase P1
S COUNTRESETS: next state =S ERASEP2; //Reset Counters

S ERASEP2: next_state = (dotCounter <= 10'b0100100000)? S_ ERASEP2 : S COUNTRESET®6; //Erase P2
S _COUNTRESET®6: next_state =S ERASERKTI; //Reset Counters
S_ERASERKTI: next_state = (dotCounter <= 10'd8)? S_ERASERKT1: S COUNTRESET?7;//Erase P1 RKT
S_COUNTRESETT7: next_state =S _ERASERKT2;

S _ERASERKT?2: next_state = (dotCounter <= 10'd8)? S_ERASERKT2: S UPDATE;

S UPDATE: next_state =S DRAWPI;

S P1WIN: next_state = (blackCounter <= 18'd76799)? S PIWIN: S COUNTRESETS;
S P2WIN: next_state = (blackCounter <= 18'd76799)? S P2WIN: S COUNTRESETS;
S COUNTRESETS: next_state =S MENU;

S _COUNTRESET?Y: next_state =S_INIT;

default: next_state=S_MENU;

//Draw Menu

//Reset Counters
//Erase P2 RKT
//Update Registers
//P1 Win Screen
//P2 Win Screen
//Reset Counters
//Reset Counters

begin: enable_signals //Initial output values

1d_plot
update
erase
init

=1'b0;
= 1'b0;
=1'b0;
=1'b0;

26

1d_pl = 1'b0;

1d p2 =1'b0;
1d_rktl =1'b0;
1d_rkt2 =1'b0;
countReset =1'b0;
newRound =1'b0;
ld_menu =1'b0;
1d_plwin =1'b0;
1d_p2win =1'D0;

case(current_state)
S_MENU: begin
1d_plot <= 1'bl;
Id_menu <= 1'bl;

end

S_INIT: begin
init =1Dl;
newRound =1Dl;
1d_plot =1bl;
end

S WAIT: begin
init =1'bl;
end

S DRAWPI: begin
1d_plot =1l;
erase =1'b0;
1d_pl =1l;
end

S COUNTRESET!: begin
countReset = 1'bl;
end

S DRAWP2: begin
Id_plot =1'b1;
erase =1'b0;
1d_p2 =1l;
end

S _COUNTRESET2: begin
countReset = 1'bl;

end

S DRAWRKT]1: begin
Id plot =1'b1;
1d_rktl =1l;
end

S COUNTRESET3: begin
countReset = 1'bl;

end

S DRAWRKT?2: begin
1d_plot =1'l;
Id rkt2 =1'b1;
end

//Menu State, send plot and 1d menu signals

//Init state

//Send signals to Draw Player 1

//Send signals to Draw Player 1

//Send signals to Draw Player 1 Rocket

//Send signals to Draw Player 2 Rocket

27

endcase

S_COUNTRESET4: begin

countReset = 1'bl;
end

S_ERASEP1: begin //Send signals to Erase Player 1

erase =1bl;

Id plot =1'bl;

1d_pl =1'bl;
end

S_COUNTRESETS: begin

countReset = 1'bl;
end

S_ERASEP2: begin //Send signals to Erase Player 2

erase =1bl;

Id plot =1'bl;

1d_p2 =1'bl;
end

S_COUNTRESET®6: begin

countReset = 1'bl;

end
S_ERASERKT1: begin //Send signals to Erase Player 2 Rocket
1d_plot =1l;
erase =1'bl;
1d_rktl =1Dl;
end

S_COUNTRESETY7: begin

countReset = 1'bl;

end

S_ERASERKT?2: begin //Send signals to Erase Player 2 Rocket
1d_plot =1l;
erase =1'bl;
Id rkt2 =1'bl;
end

S_UPDATE: begin //Send signals to update the data registers
update =1'bl;
end

S P1WIN: begin //P1 Won, send signals to load pl win screen
1d_plot=1'b1;
1d_plwin=1l;
end

S _P2WIN: begin //P1 Won, send signals to load pl win screen
1d_plot = 1'b1;
1d_p2win = 1'bl;
end

S_COUNTRESETS: begin

countReset = 1'bl;
end

S _COUNTRESETY: begin

countReset = 1'bl;
end

28

end

//State Transitions

always@(posedge clock)

begin: state FFs

if(!reset || menuScreen) //If reset or in menu State from game control FSM
current_state <= S MENU;

else if (shipsCollide || p1Hit || p2Hit) //If ships collide from collision module

current_state <= S_INIT; //Reset the round

else if (p1 Win) //P1 Wins
current_state <= S P1WIN;

else if (p2Win) //P2 Wins
current_state <= S P2WIN;

else if (playGame) //Play enable signal from game control FSM
current_state <= next_state; //Allows the draw FSM to advance to next states

end

endmodule

//Display Datapath Module
module displayData (

input clock,
input reset,

input erase, init, 1d_plot, 1d p1, 1d p2, Id_rktl, 1d rkt2, countReset, ld menu, 1d plwin, Id p2win,

input [8:0] x_posl, x_pos2, x_rktl, x_rkt2, //X position of ships, rockets
input [7:0] y_posl,y pos2,y rktl,y rkt2, //Y position of ships, rockets
input [1:0] p1Orientation, p2Orientation, //Orientation of ships

input [1:0] rkt1Orientation, rkt2Orientation, // Orientation of rockets
output reg [8:0] x_vga, //x out to VGA

output reg [7:0] y_vga, /IY out to VGA

output reg [2:0] colour_out, //Colour data to VGA

output reg [9:0] dotCounter,
output reg [24:0] freqCounter,
output reg [17:0] blackCounter);

//Counter register
reg [5:0] x_counter;

reg [5:0] y_counter;
reg [8:0] blackCounter x;
reg [7:0] blackCounter y;

//colour data wires

wire [2:0] colourp1North, colourp1East, colourp1South, colourpl West;
wire [2:0] colourp2North, colourp2East, colourp2South, colourp2West;
menuTL, menuTR, menuBL, menuBR;

P1WinTL, PIWinTR, P1WinBL, P1WinBR;

P2WinTL, P2WinTR, P2WinBL, P2WinBR;

wire
wire

el e lire
—_ =S =

2:0
2:0
wire [2:0

//Address for accessing memory modules
wire [8:0] address;

//Player 1
//Player 2
//Menu Quadrants
//P1 Screen Quadrants
//P2 Screen Quadrants

29

assign address = (y_counter * 17) + x_counter;
reg[8:0] bg_x;

reg [7:0] bg_y;

wire [14:0] bgTL, bgTR, bgBL, bgBR;

assign bgTL = (bg_y * 160) + bg_x;

assign bgTR = (bg_y * 160) + (bg_x - 159);

assign bgBL = ((bg_y - 120) * 160) + bg_x;

assign bgBR = ((bg_y - 120) * 160) + (bg_x - 159);

//Getting colour data

p1North c1 (.address(address), .clock(clock), .q(colourp1North));
plEast ¢2 (.address(address), .clock(clock), .q(colourp1East));
p1South ¢3 (.address(address), .clock(clock), .q(colourp1South));
p1West c4 (.address(address), .clock(clock), .q(colourpl West));

p2North c5 (.address(address), .clock(clock), .q(colourp2North));
p2East c6 (.address(address), .clock(clock), .q(colourp2East));
p2South ¢7 (.address(address), .clock(clock), .q(colourp2South));
p2West ¢8 (.address(address), .clock(clock), .q(colourp2West));

MenuTL c9 (.address(bgTL), .clock(clock), .q(menuTL));

MenuTR c10 (.address(bgTR), .clock(clock), .q(menuTR));
MenuBL c11 (.address(bgBL), .clock(clock), .q(menuBL));
MenuBR c12 (.address(bgBR), .clock(clock), .q(menuBR));

p1TL c13 (.address(bgTL), .clock(clock), .q(P1WinTL));
p1TR c14 (.address(bgTR), .clock(clock), .q(P1WinTR));
p1BL c15 (.address(bgBL), .clock(clock), .q(P1WinBL));
p1BR c16 (.address(bgBR), .clock(clock), .q(P1WinBR));

p2TL c17 (.address(bgTL), .clock(clock), .q(P2WinTL));
Pp2TR c18 (.address(bgTR), .clock(clock), .q(P2WinTR));
p2BL c19 (.address(bgBL), .clock(clock), .q(P2WinBL));
P2BR ¢20 (.address(bgBR), .clock(clock), .q(P2WinBR));

always@(posedge clock)

begin

if('reset)
begin
x_vga <=9'b0;
y_vga <= 8'b0;
bg x <=9'd0;
bg_y <=8'd0;

dotCounter <= 10'b0;
colour_out <= 3'D0;
blackCounter x <= 9'b0;
blackCounter_y <= 8'b0;

x_counter <= 6'b0;
y_counter <= 6'b0;

//For accessing mif files for ship drawing

/[For accessing mif files in top left quadrant
//For accessing mif files in top Right quadrant
//For accessing mif files in Bottom left quadrant
//For accessing mif files in top right quadrant

//Player 1 Colour Data

//Player 2 Colour Data

//Menu Screen Colour Data

//P1 Win screen colour data

//P2 Win screen colour data

//Reset registers

30

else

blackCounter <= 18'b0;
freqCounter <= 25'b0;

end
begin
if (init && 1d_plot) //nit state, draw background
begin
if (blackCounter == 18'd76800) //Counts the number of pixels up to 320x240
begin
blackCounter <= 18'b0;
end
else
begin
x_vga <= blackCounter_x;
y_vga <= blackCounter y;
blackCounter <= blackCounter + 1'b1;
if(x_vga==y vga*y vga*y vga*y vga*y vga && x_vga !=9'd0) //draw stars function
colour_out <=3'b110;
else
colour out <= 3'D0;
if (blackCounter x == 9'd320)
begin
if (blackCounter y == 8'd240) //Counter has reached the end
begin
blackCounter x <= 9'b0;
blackCounter_y <= 8'b0;
end
else //Reached end of row, go to next row
begin
blackCounter y <= blackCounter y + 1'bl;
blackCounter x <= 9'b0;
end
end
else
blackCounter x <= blackCounter x + 1'b1; //Update 1 pixel to right
end
end
if (countReset) //Count reset signal, resets all counters/ registers
begin

dotCounter <= 10'b0;
x_counter <= 9'b0;
y_counter <= 8'b0;
blackCounter <= 17'b0;
blackCounter x <= 9'b0;
blackCounter y <= 8'b0;
bg x <=9'd0;

31

bg y <=8'd0;

end

if (1d_menu && 1d_plot)

begin
if (blackCounter == 18'd76800)
begin
blackCounter <= 18'b0;
end
else
begin
X_vga <=bg x;
y_vga<=bg_y;
if (bg_x <=9'd159 && bg_y <= 8'd119)
colour_out <=menuTL;
if (bg_x >=9'd160 && bg_y <=8'd119)
colour_out <= menuTR,;
if (bg_x <=9'd159 && bg_y >= 8'd120)
colour_out <= menuBL;
if (bg_x >=9'd160 && bg_y >= 8'd120)
colour_out <= menuBR;
if (bg_x == 9'd320)
begin
if (bg_y == 8'd240)
begin
bg x <=9'b0;
bg y <= 8'b0;
end
else
begin
bg y<=bg y+ 1bl;
bg x <=9'b0;
end
end
else
bg x <=bg x+ 1'bl;
blackCounter <= blackCounter + 1'b1;
end
end
if (Id_plwin && 1d_plot)
begin

if (blackCounter == 18'd76800)

begin
blackCounter <= 18'b0;

//Loading the menu screen into the VGA adapter

//XY in top left quadrant

//XY in top right quadrant

//XY in bottom left quadrant

//XY in bottom right quadrant

//Load p1 win screen to VGA

32

else
begin
X_vga <=bg x;
y_vga<=bg_y;
if (bg_x <=9'd159 && bg_y <= 8'd119)
colour_out <=P1WinTL;
if (bg_x >=9'd160 && bg_y <=8'd119)
colour_out <= P1WinTR;
if (bg_x <=9'd159 && bg_y >= 8'd120)
colour out <=P1WinBL;
if (bg_x >=9'd160 && bg_y >= 8'd120)
colour_out <= P1WinBR;
if (bg_x == 9'd320)
begin
if (bg_y == 8'd240)
begin
bg x <=9'b0;
bg y <=8'b0;
end
else
begin
bg y<=bg y+1bl;
bg x <=9'b0;
end
end
else
bg x <=bg x+ 1'bl;
blackCounter <= blackCounter + 1'b1;
end
end
if (1d_p2win && 1d_plot)
begin

end

if (blackCounter == 18'd76800)

else

begin
blackCounter <= 18'b0;
end

begin

X_vga<=bg x;

y_vga<=bg y;

if (bg_x <=9'd159 && bg_y <= 8'd119)
colour_out <= P2WinTL,;

//Top Left quadrant

//Top right quadrant

//Bottom left quadrant

//Bottom right quadrant

//Load P2 Win screen to VGA

33

if (bg_x>=9'd160 && bg_y <= 8'd119)
colour_out <= P2WinTR;

if (bg_x <=9'd159 && bg_y >= 8'd120)
colour out <=P2WinBL;

if (bg_x >=9'd160 && bg_y >= 8'd120)
colour_out <= P2WinBR;

if (bg_x == 9'd320)

begin
if (bg_y == 8'd240)
begin
bg x <=9'b0;
bg y <=8'b0;
end
else
begin
bg y<=bg y+1bl;
bg x <=9'b0;
end
end
else
bg x <=bg x+ 1'bl;
blackCounter <= blackCounter + 1'b1;
end
end
if(ld pl && erase && 1d_plot) //Erasing P1 ship
begin

if (dotCounter == 10'b0100100001)

else
begin

begin

dotCounter <= 10'b0;
x_counter <= 9'b0;
y_counter <= 8'b0;
end

X_vga <=Xx_posl +x_counter;
y_vga<=y posl +y counter;
dotCounter <= dotCounter + 1'b1;
if(x_vga==y vga*y vga*y vga*y vga*y vga && x_vga !=9'd0)
colour_out <=3'b110;
else
colour_out <= 3'D0;

if (x_counter == 6'd17)
begin
if (y_counter == 6'd17)

34

begin
x_counter <= 6'b0;
y_counter <= 6'b0;

end
else
begin
y_counter <=y counter + 1'b1;
x_counter <= 6'b0;
end
end
else
x_counter <= x_counter + 1'b1;
end
end
if(ld_p2 && erase && 1d_plot) //Erasing p2 ship
begin
if (dotCounter == 10'b0100100001)
begin
dotCounter <= 10'b0;
x_counter <= 9'b0;
y_counter <= 8'b0;
end
else
begin

X_vga <=X_pos2 + x_counter;
y_vga<=y pos2 +y counter;
dotCounter <= dotCounter + 1'b1;
if(x_vga==y vga*y vga*y vga*y vga*y vga && x_vga !=9'd0)
colour_out <=3'b110;
else
colour_out <= 3'b0;

if (x_counter == 6'd17)
begin
if (y_counter == 6'd17)
begin
x_counter <= 6'b0;
y_counter <= 6'b0;
end
else
begin
y_counter <=y counter + 1'b1;
x_counter <= 6'b0;
end
end
else
x_counter <=x_counter + 1'b1;
end

end

if (Id_plot && lerase && 1d pl) //Drawing out Player 1 ship
begin
if (dotCounter == 10'b0100100001)
begin

else

dotCounter <= 10'b0;
x_counter <= 6'b0;
y_counter <= 6'b0;
end

begin

X_vga <=Xx posl +x_counter;
y_vga <=y posl +y_counter;
dotCounter <= dotCounter + 1'b1;

if (p1Orientation == 2'b00) //[Facing north, use north oriented colour data
begin
colour_out <= colourp1North;
end

if (p1Orientation == 2'b01) //Facing east, use north oriented colour data
begin
colour_out <= colourp1East;
end

if (p1Orientation == 2'b10) //Facing South, use north oriented colour data
begin
colour_out <= colourp1South;
end

if (p1Orientation == 2'b11) //Facing West, use north oriented colour data
begin

colour_out <= colourplWest;
end

if (x_counter == 6'd17)
begin
if (y_counter == 6'd17)
begin
x_counter <= 6'b0;
y_counter <= 6'b0;
end
else
begin
y_counter <=y counter + 1'bl;
x_counter <= 6'b0;
end
end
else

36

end

x_counter <=x_counter + 1'b1;

end

if (Id_plot && lerase && 1d_p2) //Draw p2 ship

else

begin

if (dotCounter == 10'b0100100001)
begin

dotCounter <= 10'b0;

x_counter <= 6'b0;

y_counter <= 6'b0;

end

begin

X_vga <=X_pos2 + x_counter;
y_vga <=y pos2 +y_ counter;
dotCounter <= dotCounter + 1'b1;

if (p2Orientation == 2'b00) //Facing north, use north oriented colour data
begin
colour_out <= colourp2North;
end

if (p2O0rientation == 2'b01) //Facing north, use north oriented colour data
begin
colour_out <= colourp2East;
end

if (p20rientation == 2'b10) //Facing north, use north oriented colour data
begin
colour_out <= colourp2South;
end

if (p2O0rientation == 2'b11) //Facing north, use north oriented colour data
begin

colour_out <= colourp2West;
end

if (x_counter == 6'd17)

begin

if (y_counter == 6'd17)
begin
x_counter <= 6'b0;
y_counter <= 6'b0;
end

else
begin

y_counter <=y _counter + 1'bl;
x_counter <= 6'b0;

37

end
end
else

x_counter <= x_counter + 1'b1;

end
end

//Drawing and erasing rockets

if (1d_plot && lerase && 1d_rktl) //Draw P1 Rocket 3x3 pixel square
begin
if (dotCounter == 10'd9)
begin
dotCounter <= 10'b0;
end
else
begin
if (x_counter == 6'd3 && y_counter !== 6'd3)
begin
y_counter <=y counter + 1'bl;
x_counter <= 6'b0;
end
else
begin
x_counter <=x_counter + 1'b1;
x_vga <=x_rktl + x_counter;
y_vga<=y rktl +y counter;
colour_out <=3'5100;
dotCounter <= dotCounter + 1;
end
end
end
if (1d_plot && lerase && 1d_rkt2) //Draw P2 Rocket 3x3 pixel square
begin
if (dotCounter == 10'd9)
begin
dotCounter <= 10'b0;
end
else
begin
if (x_counter == 6'd3 && y_counter !== 6'd3)
begin
y_counter <=y counter + 1'bl;
x_counter <= 6'b0;
end
else
begin

x_counter <=x_counter + 1'b1;

38

x_vga <=x_rkt2 + x_counter;
y_vga<=y rkt2 +y counter;
colour_out <= 3'b010;
dotCounter <= dotCounter + 1;

end
end
end
if (1d_plot && erase && 1d_rktl) //Erasing P1 Rocket
begin
if (dotCounter == 10'd9)
begin
dotCounter <= 10'b0;
x_counter <= 6'd0;
y_counter <= 6'd0;
end
else
begin
if(x_vga==y vga*y vga*y vga*y vga*y vga && x_vga !=9'd0)
colour_out <=3'D110;
else
colour_out <= 3'b0;
if (x_counter == 6'd3 && y_counter !==6'd3)
begin
y_counter <=y _counter + 1'b1;
x_counter <= 6'b0;
end
else
begin
X_counter <=x_counter + 1'b1;
x_vga <=x_rktl + x_counter;
y_vga <=y rktl +y counter;
dotCounter <= dotCounter + 1;
end
end
end
if (1d_plot && erase && 1d_rkt2) //Erasing P2 Rocket
begin

if (dotCounter == 10'd9)
begin
dotCounter <= 10'b0;
x_counter <= 6'd0;
y_counter <= 6'd0;
end

end
endmodule

else
begin
if(x_vga==y vga*y vga*y vga*y vga*y vga && x_vga !=9'd0)
colour out <=3'D110;
else
colour_out <= 3'b0;

if (x_counter == 6'd3 && y_counter !== 6'd3)
begin
y_counter <=y_counter + 1'b1;
x_counter <= 6'b0;

end

else
begin
X_counter <=x_counter + 1'b1;
x_vga <=x_rkt2 + x_counter;
y_vga <=y rkt2 +y counter;
dotCounter <= dotCounter + 1;
end

end

end

//Freq Counter, used to pause the FSM to a rate where updates happen at 60Hz
if (freqCounter == 25'd833333)

begin

freqCounter <= 25'd0;

end
else

freqCounter <= freqCounter +1;
end

40

