
Expanded Data Awareness in Airflow
Authors: & Constance Martineau Tzu-ping Chung

Warning: We are in the process of migrating this document
to Confluence here. This will be updated once the
migration is completed

Introduction
This document aims to facilitate a formal discussion around a critical evolution within Airflow:
The integration of enhanced data awareness. We will follow up with a set of formal AIPs.

Motivation
Airflow has become the standard for orchestrating complex data workflows. However, it
operates with limited visibility into the actual data it processes or produces. While it understands
task execution order and attributes like operators and parameters in use, it lacks insight into the
nature of data inputs and outputs. This link between data and tasks is fundamental to data
engineering and is vital for providing insights into the state and health of data as it moves
through the workflow. Orchestrators are the heart of data platforms, and if they can understand
this link, they can make orchestration decisions based on data quality and freshness, while also
providing data engineers with insights about system and data reliability in one place.

The current proposal aims to incentivize users to provide context about processed data when
designing pipelines and provide data insights within Airflow. An enhanced understanding of the
relationship between tasks and the data that was processed will also allow Airflow to more
reliably emit this information to third-party systems via OpenLineage.

Addressing the Knowledge Gap

Primary Concerns of Data Engineers

In the context of data engineering, assets are the data entities that move through pipelines,
undergo transformations, and ultimately drive business insights and power data products.
Although data engineers spend considerable time building and maintaining data pipelines and
are important, they are a means to an end. The data asset itself is what drives business value.

Most data tools like Fivetran, Snowflake, dbt, Monte Carlo, Feast, and Tableau have adopted
data assets as their central concept. Airflow, on the other hand, prioritizes task execution and

mailto:constance@astronomer.io
mailto:tp@astronomer.io
https://cwiki.apache.org/confluence/display/AIRFLOW/AIP-73+Expanded+Data+Awareness

treats the data asset as a byproduct. This conscious decision has allowed Airflow to be flexible
enough to be used for a myriad of use-cases outside of data engineering and is a key factor to
Airflow’s viral adoption. However, with changes to the data landscape and the advent of Gen AI,
stakeholders’ access to high quality data is more important than ever, making it critical for data
orchestration tools to provide data engineers with actionable insights about the data’s state and
health as it moves through the workflow.

The current disconnect hampers Airflow’s ability to make informed orchestration decisions
based on the actual data and creates a gap between task management and data management,
resulting in clunky integrations, limited understanding of how data flows from point A to point B,
and forces data engineers to translate between the workflow-oriented world of Airflow and the
data asset-oriented world of the rest of the data platform.

Progressive Adoptability

Enhancing data awareness in Airflow requires a strategy that supports progressive adoptability
to bridge the gap between task-centric and asset-oriented approaches. This strategy is crucial
as it is impractical to rewrite existing pipelines entirely. Evolution, not revolution, is the key.

●​ Resource and Effort Considerations: Defining and maintaining detailed data
semantics introduces complexity. Users need the flexibility to adopt these features
gradually, implementing them as their needs evolve without an overwhelming burden.

●​ Legacy Support: Airflow is widely used, with many critical existing DAGs. Progressive
adoptability ensures that enhancements in data awareness can be integrated without
disrupting or rendering these workflows obsolete, thus protecting users' investments.

●​ Selective Enforcement: Similar to CI tools with customizable rulesets, Airflow can allow
users to incrementally adopt data-awareness features. This approach enables users to
apply specific aspects of data awareness to their workflows, aligning with their
requirements and maturity levels.

●​ Leveraging Existing Practices: Drawing from software development practices, such as
Python type annotations, Airflow can enable users to gradually enhance their DAGs with
data-related semantics and validations, improving data handling and pipeline reliability at
their own pace.

By facilitating a smooth, incremental transition, Airflow can address the gap effectively, allowing
it to evolve into a more data-aware platform while ensuring continuity and minimizing disruption.

Handling Incremental Load Strategies

A critical aspect of enhancing data awareness in Airflow involves improving how the framework
manages incremental jobs and data processing strategies – critical for executing backfills
effectively and ascertaining data freshness. Although the existing model is flexible with logical
dates and data intervals that are calculated based on the DAG schedule, there is a longstanding
need for first-class support for incremental processes within Airflow. This approach should

incorporate other strategies that are commonly used, such as leveraging watermarks or
processing data for rolling windows. Establishing proper methodology for incrementally loading
data and re-processing data chunks ensures reliability, performance, and lays the groundwork
for executing “intelligent” backfills.

Drawing inspiration from DBT, Airflow could offer alternative methods for executing and tracking
incremental job runs:

●​ Full-refresh: Rebuilds the dataset at every run. This is suitable for small environments
or in the early stages of a DAG.

●​ Every Instance: Each task execution is independent and can be run in parallel,
potentially with different parameters. This is useful for ML experimentation.

●​ Only-Run-Latest/Catch-up: Executes only the most recent task instance to update the
dataset, streamlining operations and focusing resources on the most current data. This
aligns well with the high-watermark strategy and may be appropriate for event-driven
workloads.

●​ Date Range: Executes tasks based on a specified date or time range and would include
windows, allowing for targeted updates of a dataset. This method is similar to leveraging
data intervals today.

●​ Segments: Executes tasks based on segments such as region, team, or other
categories. This approach allows for targeted processing of specific segments, enabling
efficient handling of large datasets divided by logical partitions.

Incorporating these strategies requires Airflow to have a nuanced understanding of the data it
manages, specifically identifying which blocks of a dataset need updates. This enhancement
promises to streamline workflow execution and align Airflow more closely with modern data
engineering practices, facilitating a more intuitive and efficient handling of incremental data
processing.

Proposed Enhancements

Introducing Assets

⚠️ All code examples in this document may evolve and is subject to change.

A data asset is, fundamentally, a collection of logically related data. This can be one of (but not
limited to):

●​ A table in a relational database
●​ An persisted ML model
●​ An embedded dashboard or report
●​ A bunch of tables grouped by a naming convention sharing a near-identical structure
●​ A directory containing CSVs

Assets are written at some point. From a programmatic standpoint, we will define assets as
entities within a function that are generated when that function is called and executed. Assets
can be created as one-off events, but more commonly are updated somewhat periodically,
either indefinitely or until a set point of time. Each write can either:

●​ Replace data in its entirety (for example by deleting and recreating a table)
●​ Incrementally append data to an existing asset (for example by inserting or upserting DB

records into an existing table or by creating a new file in a directory), or
●​ Publish a new iteration of the asset (for example by publishing a new ML model version

or creating and sending a new iteration of regulatory report).

While it’s not necessary for a pipeline to understand this distinction, similar to how version
control systems consider diffs, it is important for pipelines to understand what each task
execution changes within an asset in order for Airflow to highlight impacts on other dependent
assets and recreating those writes retroactively (i.e backfilling, discussed later).

Rename Datasets to Assets

Taking inspiration from other tooling like Great Expectations, Atlan and Dagster, we propose to
rename Datasets to Assets, and potentially introduce subtypes. The term “asset” is more
generalizable, and can be used to represent other data products like serialized ML models.

●​ This opens the door to us adding different types of assets beyond datasets, like ML
models. ML practitioners use datasets AND serialized models as part of their ML
pipelines, and while there is nothing that is stopping ML practitioners from representing
both as “datasets” in Airflow today, it is uncomfortable to refer to models as datasets
when they are distinct concept, and makes it hard to distinguish between tasks updating
ML models and tasks updating datasets in the UI and in the code.

●​ We can add specific attributes for different asset types. For example, most datasets are
semi-structured and in a tabular format, so it is reasonable to assume that datasets have
schemas with column names and types.

Asset Annotations
We propose to formalize support for manually annotating data inputs and outputs via task inlets
and outlets and showcase this relationship in the UI, allowing for the ability to progressively
adopt the features. Inlets and outlets are used by OpenLineage today to allow operators to track
lineage. By setting data inputs as task inlets and data outputs as task outlets, we ensure that
each task's data dependencies and contributions are clearly articulated, establishing a contract
for data flow within the workflow.

Using Asset Annotations, you could then do something like this:

Python

Python

raw_sales = Asset('raw_sales', uri='s3://...') # URI is optional
aggregated_sales = Asset(
 'aggregated_sales',
 uri='snowflake://...',
 column=['sales'],
)

task_aggregate_sales = SqlOperator(
 inlets=[raw_sales],
 outlets=[aggregated_sales],
 sql = """
 INSERT INTO {{ outlets.aggregated_sales }}
 SELECT SUM({{ inlets.raw_sales.sales }}) ​
 FROM {{ inlets.raw_sales }}
 """,
)

New Asset-Centric Syntax

Asset Function
If creating new workflows for tools that are asset-centric, we propose extending the Taskflow
API to include primitives that are asset-centric. In addition to Asset Annotations, Assets can be
defined in a file by a decorated python function:

at is optional. human readable name defaults to function
name if none is given
@asset(at="s3://aws_conn_id@bucket/bus_trips.parquet")
def bus_trips():
 # Write bus trips data to asset...

The asset would be at the same level as a DAG, and would be defined by the function. Unlike
@tasks and @dags, you would not need to call it.

Python

Python

The at argument specifies the asset’s location, similar to adding a Dataset to outlets today. It
allows simply passing in a plain URI string or an ObjectStoragePath to be automatically
coerced.

Multi-Assets

There are cases where the same function may generate multiple assets, such as when
generating training and testing datasets for ML. This isn’t necessary for most situations, but is a
valid use case (like an upstream asset needing to be split into two). To accommodate, we will
allow users to pass in parameters for multiple Assets. Some parameters will be unique per asset
and some, like schedules or partitions (see below) will be shared.

@asset.multi(
 outlets=[
 {"name":"bus_trip_1","at":"s3://../bus_trip_1.parquet"},
 {"name":"bus_trip_2","at":"s3://../bus_trip_2.parquet"},
],
)
def split_trips():
 ...

Asset Dependencies
Upstream assets can be set as function arguments for the decorated function.

@asset(at="s3://aws_conn_id@bucket/raw_sales.parquet")
def raw_sales():
 # Write raw sales data to asset...

@asset(at="snowflake://...")
def aggregated_sales(raw_sales):
 # Write aggregated sales data to asset...

All assets in an Airflow deployment share one single namespace. This is also the same
namespace for DAGs to avoid confusion. Different assets can reference the same URI to
support the use case of writing to the same data target from two functions—not a best but
unfortunately common practice.

Python

Asset Validations
To increase data reliability, we propose adding capabilities for data consumers and data
producers to define and verify expectations around input and output assets via Operators and/or
Asset definitions. Data Engineers can state things like expected column names and data types,
update frequency, or even what the contents of a field should look like, allowing them to define
their expectations.

There would be two types of validations:

●​ Pre-runtime validations for data consumers to verify that established data flow contracts
are valid

●​ Post-runtime validations for data producers that publicize that the data that was
processed upholds an established contract

As data consumers, you would be able to define pre-runtime validation rules that are executed
prior to the task, such as for example checks to ensure that certain columns exist. If
discrepancies are found, Airflow could send a notification, preventing potential runtime errors
and removing the need to perform cleanup actions. These could be set as part of the task
definition (“inlet_validations” in the example) or as part of setting asset dependencies if using an
asset-centric syntax.

As data producers, you could define validation rules that “certify” that the data was processed
correctly, for example checks to ensure that values in a specific column follow a pattern, like
phone numbers. This could be set as part of the actual asset definition.

Lastly, we should have built-in validations that are accessible via the asset and also allow for
custom user-defined validations.

raw_sales = Asset(
 'raw_sales',
 uri='s3://...',
 outlet_validations=[AssetValidation.has_columns('sales')]
 column=['sales'],
)
aggregated_sales = Asset(
 'aggregated_sales',
 uri='snowflake://...',
 column=[...],
 type='dataset',
)

task_aggregate_sales = SqlOperator(
 inlets=[raw_sales],
 outlets=[aggregated_sales],
 inlet_validations=AssetValidation.has_columns(
 raw_sales.sales
),
 sql = """
 INSERT INTO {{ outlets.aggregated_sales }}
 SELECT SUM({{ inlets.raw_sales.sales}}) ​
 FROM {{ inlets.raw_sales }}
 """,
)

Asset Partitions and Schedules

This section is meant to be high-level and introduce some core concepts. The actual AIPs will
go in much more detail.

As part of this proposal, we would like to decouple the concept of when an asset is scheduled,
and the slice of data that was processed (data interval today). Using a simple example, an asset
may be scheduled to be generated once a day, but includes data for the last three days.

Today, Airflow calculates the data interval based on the schedule and assumes that the data
interval or partition is the time in between runs. Users may leverage the data interval or logical
dates to calculate the proper data interval range, but that makes it difficult to highlight the impact
on other downstream assets whenever something has been reprocessed. Furthermore, this only
works for time-based intervals. We will overcome this by introducing the concept of a partition.

Schedules

Time and Asset-based Scheduling

The schedule of an asset denotes when the asset is written to. If the writing is done by a
process managed by the pipeline, the schedule reflects when the pipeline kicks off the process
to do the writing. Similar to today, you will be able to set time-based schedules and/or schedule
assets to be generated whenever upstream assets are generated.

Python

@asset(
 start_date=datetime(1976, 6, 4), # When writes start. (Optional)
 schedule="@yearly", # When should a write happen.
)
def name():
 # Code to concretely write data to this asset...

Future Work: Scheduling Tolerations and Thresholds

Some upstream assets may be more important than others. While ideally it may be best to wait
until all upstream dependencies have been met before generating an asset, there are cases
where it is better to generate assets using what is available vs waiting, for example when
generating regulatory reports that are fined when late. In addition, there are also cases where
it’s acceptable to generate an asset provided the freshness is within a certain threshold, for
example leveraging an ML model that has been trained within the last month. We propose to
introduce the concept of thresholds and tolerations to account for these types of use-cases.
These can be used by data consumers as needed, and may be different across dependent
assets.

One example use case is an asset that depends on another asset that is written daily, but
sometimes a run is missed. You can mark the downstream asset’s tolerance to daily so a
materialization is triggered whenever the upstream is materialized, or when a day has passed
without the upstream being updated. There are more than one way to do this, and the feature
itself is not considered essential, so we are delaying this further into the future until the basic
features are done.

Partitions

Understanding Partitions

At a high-level, partitions are “slices” of data assets that can be tracked and computed
independently. They typically correspond to separate files or slices of tables, and are especially
useful for modeling data that is appended or modified when running incremental load
processes.

The idea behind partitions is to provide a way to model and organize data that is closely related,
but still distinct, and decouple it from the task. For example, a daily-partitioned table for sales
orders could be seen as a collection of partitions that correspond to a sales order data asset,
with each partition corresponding to sales orders that were made on a particular day. These
partitions are computed using the same code and derived from the same upstream sources.
They can be processed and visualized in bulk, and also individually or as a subset.

Partitions in Airflow are meant to be a logical concept and don’t necessarily need to correspond
to a partition at the storage layer. Some systems like Hive have an explicit notion of partitions
with table partitions corresponding to a subdirectory in the directory where the table is stored,
whereas other systems like Snowflake abstract storage away entirely. Even without a direct link,
the concept is incredibly useful for data orchestration. When you overwrite data in a Snowflake
table for a specific date range, you’re deleting all the rows that have that date and then inserting
a new set of rows for that date — i.e working with a logical partition.

While Airflow has a basic notion of logical partitioning today via the grid view and ability to
parameterize DAG runs with a logical_date, partitions are fundamentally a property of the
data, not the task. Airflow’s current implementation works well in certain cases, but comes with
constraints:

●​ It’s automatically calculated based on the schedule and requires for all data updated by
the DAG to be partitioned in the same way.

●​ It requires for partitions to be one-to-one with task runs.

For data flows that don't fit these parameters, our current implementation can actually increase
confusion by misrepresenting what’s going on.

A partition describes how an asset is partially generated whenever its function executes. The
function itself does not strictly require this information — the asset’s function body can
technically do whatever it wants and is inherently the canonical source of truth to what gets
written — but there are clear benefits to using them:

●​ The partition tells other parts of the system how an asset is generated, without needing
to analyze data outputs. If we know that the raw sales order asset uses hourly
partitions, and we know that the daily sales order asset is dependent on the raw sales
order asset, then we also know that 24 partitions from the raw sales order asset that
were generated on a specific day correspond to 1 partition in the daily sales order asset
for that same day. We can more granularly highlight the flow of data in the UI, and
showcase how issues impact downstream assets.

●​ A single task can generate a range of partitions ad-hoc, for example, as part of backfills.
Let’s say an asset is scheduled to run once a day and normally processes a day’s worth
of data. Instead of launching one task per day in a date range, it may be more
performant to delegate the parallelization to the compute engine like Spark and kick off a
single task that covers multiple partitions. If using partitions, we can provide this
capability.

Using Partitions

We will introduce two categories of partitions:

1.​ Time-based partitions: These are similar to data intervals today, and are meant to
represent time or date ranges. Like today, they can automatically be derived from the
schedule or can be manually set.

Python

Python

Python

@asset(
 ...,
 schedule="@hourly",
 # defining partition for illustrative purposes. default is 'auto'
 # if 'auto' and schedule is time-based, will derive partition from schedule
 # if 'auto' and schedule is not timebased, partition will resolve to none
 # @hourly is shorthand for PartitionByInterval("@hourly")
 partition="@hourly",
)
def hourly_data():
 ...

2.​ Segment-based partitions: These are meant to represent other types of logical
groupings, like teams or cloud regions. For example, if an asset is generated every day
to evaluate the spend of multiple data warehouses, each data warehouse can be
represented as a partition.

@asset(
 ...,
 schedule="@daily",
 partition=PartitionBySequence(["marketing-dwh", "engineering-dwh"]),
)
def dwh_daily_cloud_spend():
 ...

Similar to logical dates and data intervals, partitions are parameterizable and will be available
via the task context.

@asset(...partition=PartitionBySequence(["marketing-dwh", "engineering-dwh"]))
def dwh_daily_cloud_spend():
 context = get_current_context()
 # Accesses partition information. Can retrieve the original definition,
 # the current and past partitions, etc. (Not fully hashed out yet.)

Python

Python

 dwh_partitions = context["partitions"]
 for dwh_partition in dwh_partions:
 # do something

Partitions can be static or dynamic. When partitions are known up front, they will be declared as
part of the asset definition, as shown in the two previous examples. Sometimes partitions are
not known until runtime. For example, to predict energy consumption, an energy company trains
an ML model per customer. Customers are frequently added and removed, so it is simpler to get
an accurate list of customers at runtime.

active_customers = PartitionAtRuntime(name="active_customers")​
​
@asset(schedule="@hourly", partition=active_customers)
def energy_consumption_model():​
 """get customer list and train model"""​
 customers = ... # get customer list
 for customer in customers:​
 train_model = ...​
 active_customers.add_partition(key=customer)

You will also be able to combine time-based and segment-based partitions.

@asset(
 schedule=dwh_daily_cloud_spend,
 partition=PartitionByProduct(
 ["@hourly", PartitionBySequence(["marketing-dwh", "engineering-dwh"]
),
)
def dwh_spend_analysis():
 ...

After the upstream asset is generated each day, 48 (24 hours x 2 data warehouses) runs are
triggered. To simplify logic, a combined partition definition can only contain at most one

time-based partition definition. We’ll explore more complex combinations if there are concrete
real-world use cases after this feature is fully implemented and rolled out.

	Expanded Data Awareness in Airflow
	Warning: We are in the process of migrating this document to Confluence here. This will be updated once the migration is completed
	Introduction
	Motivation
	Addressing the Knowledge Gap
	Primary Concerns of Data Engineers
	Progressive Adoptability
	Handling Incremental Load Strategies

	Proposed Enhancements
	Introducing Assets
	Rename Datasets to Assets
	Asset Annotations
	New Asset-Centric Syntax
	Asset Function
	Multi-Assets
	Asset Dependencies

	Asset Validations
	Asset Partitions and Schedules
	Schedules
	Time and Asset-based Scheduling
	Future Work: Scheduling Tolerations and Thresholds

	Partitions
	Understanding Partitions
	Using Partitions

