

File handling API for​
web apps in Chrome​

(tinyurl.com/file-handling-design)

This Document is Public

Authors: huangdarwin@chromium.org (current), robertwoods@google.com (original/previous).

Last updated: 2021-03-25

Objective
The goal for this project is to implement an API that will allow Chrome progressive web apps
(PWAs) to 'handle' (read) files in the host OS's file system, in much the same way as a native app
would. This dovetails with the larger objective of increasing transparency between web apps
and native apps, enabling a more consistent user experience across both per the Progressive
Web App (PWA) paradigm.

Background
A file handler represents a web application’s ability to handle a file with one of a given set of
MIME types and/or file extensions. An image editor, for example, might support displaying
several distinct image formats. When this editor is installed it should be possible to open image
files in one of these formats from within the file browser of a user’s operating system. A web
app can register its ability to handle one of these file types in its manifest.

The file handling API will be implemented against the backdrop of a larger project to move
desktop PWAs out of Extensions in Chrome (internal), and into their own system. Initially, both
PWAs and Shortcuts (a mechanism for creating an OS-specific shortcut to launch a website in a
Chrome tab), referred to collectively as ‘Bookmark Apps’, were implemented on top of the
Extensions stack. This allowed us to leverage the existing Extensions infrastructure to furnish
the key requirements for PWAs (internal); namely, that they be persistent, installable, updateable,
launchable and syncable. But as time has passed, the need to separate Bookmark Apps and

https://tinyurl.com/file-handling-design
mailto:huangdarwin@chromium.org
mailto:robertwoods@google.com
https://github.com/WICG/file-handling/blob/master/explainer.md
http://go/chrome-bmo
http://go/chrome-bmo
https://docs.google.com/document/d/1yye3nbsG1kSQx9SZ7FJvmwrb5qLDhpuIzdYWF98sK0s/edit#

​ Page 2 of 11

Extensions has become more apparent, due to a lack of clarity around code ownership and
technical debt, among other issues. Since this work is ongoing, the APIs for Bookmark Apps
under the old system (in the extensions namespace) exist in parallel with those for Web Apps
under the new system (in web_app). Part of this project will involve facilitating the transition
from one system to the other, by implementing the API in both systems.

Overview
The implementation of the file handling APIs in Chrome will touch a number of systems. First,
the handlers must be parsed from the web app’s JSON manifest and registered with the
browser’s internal representation of the app. These representations must then be stored
persistently (e.g. in LevelDB). APIs must be created for identifying which file handlers are
available at any given point in time, and for retrieving them. Enabled file handlers must also be
registered on the host OS, so that files of the given type are associated with the web app. (This
implies the need for OS-specific implementations for common operations.) Finally, functionality
must be put in place for launching a web app with files (and dispatching on the appropriate
endpoint within the app), and for sending launched files to a running web app.

All of this must be done alongside existing file handling implementations in Extensions, without
breaking the legacy Chrome Apps file handling APIs.

Note as well that this design document will be extended to also provide File Handling icon
support. (TODO: Update this design document to incorporate icon support)

Getting file handlers from a web application manifest
The app’s JSON manifest is parsed into a blink::Manifest by blink::ManifestParser. This
new object contains Blink’s representation of the list of file handlers included in the original
manifest, and is transferred to the browser using Mojo.

https://docs.google.com/document/u/1/d/1OAkCvMwTVAf5KuHHDgAeCA3YwcTg_XmujZ7ENYq01ws/edit
https://www.w3.org/TR/appmanifest/
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/public/common/manifest/manifest.h;drc=2c1e3a68678ca19197a913d54600d7e26e0b8c41;l=202
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/manifest/manifest_parser.h?q=blink+ManifestParser&sq=package:chromium&dr=CSs&l=245
https://cs.chromium.org/chromium/src/third_party/blink/public/mojom/manifest/manifest.mojom?q=Manifest+f:mojom$&sq=package:chromium&dr=C&l=172

​ Page 3 of 11

In the browser, the blink::Manifest is converted into a WebApplicationInfo by
web_app::UpdateWebAppInfoFromManifest. This is the representation of a web app’s
metadata used by the browser when installing it as a PWA.

Saving file handlers for an installed app
Each of the file handlers in the WebApplicationInfo is converted into an apps::FileHandler
object. Previously, file handlers were represented in the apps::FileHandlerInfo format used
by Chrome Apps. (The new format is in the apps namespace so that it is available to both Web
Apps and Bookmark Apps, as Chrome dependencies are not permitted under extensions. It
may be beneficial to move all systems onto a shared representation in future.)

namespace apps {

struct FileHandler {

 ...

 struct AcceptEntry {

 std::string mime_type;

 base::flat_set<std::string> file_extensions;

 };

 GURL action;

 std::vector<AcceptEntry> accept;

};

} // namespace apps

namespace apps {

struct FileHandlerInfo {

 ...

 std::string id;

 std::set<std::string> extensions;

 std::set<std::string> types;

 ...

};

} // namespace apps

The new apps::FileHandlerformat was intended to closely mirror the proposed file handling
API explainer, while preserving an explicit mapping between MIME types and file extensions
consistent with the web standards emphasis on the former. This has the added benefit of

https://source.chromium.org/chromium/chromium/src/+/main:chrome/browser/web_applications/components/web_application_info.h;drc=e2538a88f468c175c7e745ede9727371a5036233;l=249
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/web_app_install_utils.h;drc=113124bbbc15eab2b48ac3a8568cd8e960a8c555;l=42
https://cs.chromium.org/chromium/src/extensions/DEPS
https://github.com/WICG/file-handling
https://github.com/WICG/file-handling

​ Page 4 of 11

making Linux-specific implementations of file handling possible, since this mapping is needed
for registering new MIME types with the OS and cannot be recovered from the old format.

For Bookmark Apps, the conversion to the new format happens in
extensions::ConvertWebAppToExtension. The apps::FileHandlers are serialized on the
web_app_file_handlers key of the extensions::Manifest, along with other app metadata.
The legacy apps::FileHandlerInfo format is also still serialized under the file_handlers
key, so as not to disrupt any possible existing functionality. (TODO(crbug.com/1173256): Now
that BMO has landed, the apps::FileHandlers serialization and parsing code can be
removed.)

For Web Apps, the conversion is performed by
web_app::WebAppInstallFinalizer::SetWebAppFileHandlers. We have created code for
saving web apps to and loading them from the web_app::WebAppDatabase.

Functionality has also been implemented for migrating the file handlers from a Bookmark App
to a Web App when BMO lands. After an extensive refactor of file handling code, this amounts to
a simple copy, since both platforms now share the same representation.

Finding out which file handlers are available
Again, as Bookmark Apps and Web Apps work differently, there are multiple code paths
involved. web_app::FileHandlerManager exposes common methods for working with file
handlers, such as retrieving available file handlers and enabling or disabling them. It has a single
abstract method, GetAllFileHandlers, which is implemented by a system-specific subclass,
allowing as much code to be shared between the two systems as possible. This method is
implemented by extensions::BookmarkAppFileHandlerManager and
web_app::WebAppFileHandlerManager.

Registering file handlers
There are two parts to registering file handlers, the second of which is not applicable on Chrome
OS due to its tighter integration with Chrome.

1.​ Store a bit saying file handlers are enabled. This lets us determine whether to return
everything or nullptr in FileHandlerManager::GetEnabledFileHandlers, which let’s
us determine what file handlers to attach to ShortcutInfos when creating shortcuts
(necessary on OSX and Linux), and, on Chrome OS, to determine what file handlers are
currently available.

2.​ Update file associations in the operating system. This is done by
web_app_file_handler_registration, which has platform-specific implementations.

https://cs.chromium.org/chromium/src/chrome/browser/extensions/convert_web_app.cc?sq=package:chromium&dr=CSs&g=0&l=220
https://crbug.com/1173256
https://cs.chromium.org/chromium/src/extensions/common/manifest_handlers/web_app_file_handler.h
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_install_finalizer.cc?dr=C&sq=package:chromium&g=0&l=99
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_database.cc?l=137
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_database.cc?l=271
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_database.h?g=0&l=36
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_migration_manager.cc?l=210
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_migration_manager.cc?l=210
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/components/file_handler_manager.h?q=filehandlermanager&sq=package:chromium&dr=CSs&l=25
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/components/file_handler_manager.h?q=filehandlermanager&sq=package:chromium&dr=CSs&l=72
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/extensions/bookmark_app_file_handler_manager.h?dr=CSs&q=BookmarkAppFileHandl&sq=package:chromium&g=0&l=14
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/web_app_file_handler_manager.h?q=WebAppFileHandlerManager&sq=package:chromium&dr=CSs&l=19
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/file_handler_manager.h;l=60;drc=e3d073b8d38c88267bf313a6f068392d330b27f1
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/components/web_app_file_handler_registration.h?q=f:web_app_file&dr

​ Page 5 of 11

Unregistering file handlers
Unregistering file handlers is done in
FileHandlerManager::DisableAndUnregisterOsFileHandlers.

Notably, on Windows, file type associations cannot be unregistered between a Web App and a
file type, but a web app can be disassociated as a valid file handler. Therefore, on Windows, a
web app with at least one file handler registered, will have all past file handlers registered on
Windows. (This could potentially be fixed in crbug.com/1205519)

Chrome OS-specific code
On Chrome OS, some bespoke code was required to enable the Chrome OS Files App to talk to
FileHandlerManager. This code is in web_file_tasks, which provides methods for finding
handlers for files (FindWebTasks) and launching a handler for a file (ExecuteWebTask). This
follows the pattern set by Arc, Crostini and Chrome Apps file handlers. It is completely agnostic
to the current web apps system.

Linux-specific code
In freedesktop.org-compliant Linux desktop environments, application-to-filetype associations
are created by specifying a set of MIME types supported by the app in its .desktop file. This file
is then used to register the app among those that users can run in the desktop environment. The
Linux-specific implementation of the file handling API includes code to achieve this. In some
cases, the MIME types and file extensions associated with a particular app might not exist in the
OS, and so we need a way of registering new mappings. This is done by calling out to xdg-mime.

Use of MIME Types vs file extensions
All platforms use File Extensions to register file type associations, except Linux, where mime
types are used. It’s possible that MacOS also intends to use mime types (bug).

Operating System Mime Type File Extension

Windows No Yes

ChromeOS No Yes

MacOS No (bug) Yes

Linux Yes No

Launching a web app with files
A web app may open a file using a PWA by selecting the PWA in the OS file manager’s “Open

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/file_handler_manager.h;l=60;drc=e3d073b8d38c88267bf313a6f068392d330b27f1
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/file_handler_manager.h;bpv=1;bpt=1;l=72?gsn=DisableAndUnregisterOsFileHandlers&gs=kythe%3A%2F%2Fchromium.googlesource.com%2Fchromium%2Fsrc%3Flang%3Dc%252B%252B%3Fpath%3Dsrc%2Fchrome%2Fbrowser%2Fweb_applications%2Fcomponents%2Ffile_handler_manager.h%23AjcSfHrz8tzh3jSGylmzEQ-J96OU6bwtAAbxSDNKi3A
https://crbug.com/1177401#c30
https://crbug.com/1205519
https://cs.chromium.org/chromium/src/chrome/browser/chromeos/file_manager/web_file_tasks.h?dr&q=f:web_file_task&g=0&l=1
https://specifications.freedesktop.org/menu-spec/latest/index.html#introduction
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/web_app_file_handler_registration_linux.cc;l=111;drc=5a600233f4a48ac694a4311256eb02ddf06c5318
https://crbug.com/1186812
https://crbug.com/1186812

​ Page 6 of 11

With” menu, or by simply double-clicking if the PWA is the default/only opener for the file type.

There are currently two different code paths for launching a PWA, one in the extensions system
(OpenEnabledApplication), and one in the Web Apps system
(WebAppLaunchManager::OpenApplication). The file handling parts of these functions are
largely identical and involve two steps:

1.​ Identifying the correct launch URL
(FileHandlerManager::GetMatchingFileHandlerURL). This is done by identifying the
file handler that best matches the file extensions or MIME types of the launch files, then
returning the action URL for that handler. At the moment, we only match by file
extension, and MIME types are only used for matching on Linux.

2.​ Passing the files to the launched application
(WebLaunchFilesHelper::SetLaunchPaths).

Sending launched files to a web app
From the browser process, launched files can be sent to a running web app using
WebLaunchFilesHelper::SetLaunchPaths. This creates the mojom file handles and passes
them to the renderer in WebLaunchServiceImpl::SetLaunchFiles, which calls
DOMWindowLaunchQueue::UpdateLaunchFiles to enqueue the launch files to
window.launchQueue. These launch files can be read by setting a consumer on the
launchQueue in JavaScript:

window.launchQueue.setConsumer(launchFiles => {

 // Do something with launchFiles...

});

Manifest Update
PWAs may choose to update file handlers available on their site by updating their manifest.
When this happens, file handlers will update similarly to PWA update surfaces, by detecting the
update as the PWA is navigated to in HaveFileHandlersChanged(), and updating the
registered file handlers as the PWA closes in
OsIntegrationManager::UpdateFileHandlers(), by uninstalling all file handlers and
reinstalling all file handlers. More context on manifest update is available in this design
document (internal).

On manifest update, the file handling permission state, if currently in “ALLOW”, will be set back
to “ASK”, to avoid a possibility of a PWA requesting more dangerous file types after the
permission was previously granted for less dangerous file types. If the permission state was
previously in “ASK” or “BLOCK”, the permission state will not change.

https://cs.chromium.org/chromium/src/chrome/browser/ui/extensions/application_launch.cc?sq=package:chromium&dr=CSs&g=0&l=349
https://cs.chromium.org/chromium/src/chrome/browser/ui/web_applications/web_app_launch_manager.cc?sq=package:chromium&dr=CSs&g=0&l=80
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/components/file_handler_manager.h?rcl=178a82ebdfdfd0b3c8441a3809038e35a123659b&l=42
https://cs.chromium.org/chromium/src/chrome/browser/web_launch/web_launch_files_helper.cc?sq=package:chromium&dr=CSs&g=0&l=31
https://cs.chromium.org/chromium/src/chrome/browser/web_launch/web_launch_files_helper.cc?sq=package:chromium&dr=CSs&g=0&l=31
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/launch/web_launch_service_impl.cc?type=cs&g=0&l=35
https://cs.chromium.org/chromium/src/third_party/blink/renderer/modules/launch/dom_window_launch_queue.cc?type=cs&g=0&l=25
https://docs.google.com/document/d/1q5kmxNU7i4eem22LouMaIJ6123jOw5_zuxVQW1wfW8Y/edit
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/manifest_update_task.cc;l=68;drc=6f5e972534836b8a6c87762ee2b8f85b292962c6
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/os_integration_manager.h;drc=85819a30dd841f3e786adf1cf0ce0ed2a02fb56f;l=71
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/os_integration_manager.cc;l=530;drc=8d971d1a2551c01ccfba262fa250701bb513f6f5
https://docs.google.com/document/d/1qDxrut1tzOJHkHM2v8tkMAVpfdgZV6r-rQ6cv876nDg/edit#heading=h.2cc87gwl4yk3
https://docs.google.com/document/d/1qDxrut1tzOJHkHM2v8tkMAVpfdgZV6r-rQ6cv876nDg/edit#heading=h.2cc87gwl4yk3

​ Page 7 of 11

Permissions
To ensure user trust and the safety of users’ files when file handling is used to open a file, a
permission prompt will be shown before a PWA can view a file. This permission prompt will be
shown right after:

1.​ The user selects the PWA to open a file, so that the permission is tightly coupled to the
action of opening a file using the PWA, making it more understandable and relevant.

2.​ The site loads without the file, so that the user has an expectation of what the PWA is
and why it would like to view the file.

This permission will show every time until the user clicks to “Allow” or “Block” file handling for
the site, or ignores the prompt three times (after which Chrome will embargo and BLOCK this
permission), after which the selected setting will persist across the PWA closing and reopening.
After manifest updates change file handlers though, permissions will notably be reset per the
“manifest update” section above.

This permission is implemented as ContentSettingsType::FILE_HANDLING (CL), and will
apply across all file types the PWA handles, as it is difficult for users to comprehend and make
an actionable decision based on file extensions. As spoofing is a major concern (ex. evil.com
masquerading as taxsoftware.com, and trying to read your tax software), the permission will
clearly display the origin, as well as the site in the content area underneath the prompt, and the
site title in the PWA top bar, so that users can have a clear understanding of the site attempting
to view the file.

When a permission is moved from “ALLOW” or “ASK” to “BLOCK”, file handlers will be
unregistered from the underlying operating system (CL). Similarly, when a permission is moved
from “BLOCK” to “ALLOW” or “ASK”, file handlers will be re-registered in the system.

Notably, file handlers will be registered when the PWA is first installed, without any prompt
specific to file handling (as part of the “install” prompt/flow). This is because installation of the
PWA is considered to be when all OS integrations are registered into the operating system. From
there, the permission here is to guard the user from any information leakage or improper use of
files.

Another related permission that interacts with file handling is the File System Access (formerly
Native File System) API, which can ask for write permission in a separate prompt, if the site
would later like to write to the file opened via file handling. A prompt will show up every time for
write permission, regardless of the file handling permission status.

https://crrev.com/c/2762201
https://crrev.com/c/2885422

​ Page 8 of 11

Permission prompt UX mock for M92 (link)

Permission prompt UX mock for M93 (link)

https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg#slide=id.gca53aeba86_0_4
https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg#slide=id.gca53aeba86_0_4

​ Page 9 of 11

Content setting UX mock (link)

See links in privacy and security considerations for more information and many alternative
permission models considered.

What do we still have to do?

Dispatch on MIME type
At present, FileHandlerManager::GetMatchingFileHandlerURL dispatches to a handler's
action URL on the basis of a file's extension. Functionality to dispatch on MIME type as well (in
the absence of a file extension, or perhaps to be preferred over it) needs to be added in here.

Linux-specific code
Although new MIME type will be registered on installation, there is currently no cleanup done on
uninstall. This means that any custom MIME types remain on the system once the app has been
removed. Removing them will involve deleting the corresponding shared MIME info XML file
wherever it has been installed (e.g. ~/.local/share/mime/packages), and then calling another
Linux shell command on the MIME directory (update-mime-database
~/.local/share/mime).

Mitigations for not being able to dissociate file type associations from
web apps on Windows
Per the unregistering file handlers section, Chrome cannot dissociate file type associations from
web apps. Therefore, we should account for unregistered file handlers both on permission
surfaces (bug), and ensure that launch events can only be received for file types the web app
still has registered as file handlers in the provided manifest (bug).

Project information
Chrome OS: mgiuca, alancutter, etc.​
Linux: huangdarwin (previously harrisjay and robertwoods).​
Windows: davidbienvenu.​
macOS: ccameron.

Relevant high-level bugs include 829689, 1028448 and 938103.

Bug trackers: crbug for code and GitHub issues for the WICG standards proposal. See also
handover notes (internal) and minutes from an exploration (internal) for more information.

https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg#slide=id.gc750b0e181_0_29
https://cs.chromium.org/chromium/src/chrome/browser/web_applications/components/file_handler_manager.h?rcl=178a82ebdfdfd0b3c8441a3809038e35a123659b&l=42
https://crbug.com/1205519
https://crbug.com/1205528
https://bugs.chromium.org/p/chromium/issues/detail?id=829689
https://bugs.chromium.org/p/chromium/issues/detail?id=1028448
https://bugs.chromium.org/p/chromium/issues/detail?id=938103
https://bugs.chromium.org/p/chromium/issues/list?q=component:UI%3EBrowser%3EWebAppInstalls%3EFileHandling
https://github.com/WICG/file-handling/issues
http://go/chrome-file-handling-api-handover
https://docs.google.com/document/d/10WTharXCpGuqJbTf04Pb2saR8bA762kyJ5LIb--tbaU/edit

​ Page 10 of 11

Privacy and security considerations

Registering a file association requires a degree of trust in the application the file is associated
with: that application will be able to see the contents of and potentially make modifications to
any files that it is opened with from the file manager, which poses privacy and security
concerns. This problem is more pronounced when an application is made the default handler for
certain types of files, as the user may not realise which application will be opening the file. In
some cases, an app may become the default handler without the user’s intervention, such as
when it is the only installed app capable of handling a particular file type.

For in-depth information on further security and privacy concerns, as well as mitigations
implemented or considered, please see the File Handling Security Model.

Other mitigations include a limit of 10 file handlers per PWA (CL), only providing read access on
open, and not allowing access to directories.

For in-depth information on the permission model, see the permission model (internal) and UX
mocks (internal).

Launch plans

Origin trials
There is an existing system for handling origin trials in Chromium. However, the file handling
APIs are somewhat different to other APIs that go through the origin trial process, as enabling
and disabling the trial results in some state being changed in the operating system (registering
the file handlers).

This means that the origin trial requires some special architecture: Each time a web app is
visited, we check if it has a valid origin trial token, and, if so, we register the file handlers, and
store the expiry time of the token. If the token is not valid, we unregister the file handlers. On
Chrome startup, we also unregister file handlers for all app’s where their origin trial token has
expired.

The FileHandlingExpiry service handles determining when the origin trial expires.

FileHandlerManager::CleanupAfterOriginTrials handles unregistering app’s whose file
handlers have expired on Chrome startup.

https://docs.google.com/document/d/1pTTO5MTSlxuqxpWL3pFblKB8y8SR0jPao8uAjJSUTp4/edit
https://crrev.com/c/2849657
https://docs.google.com/document/d/1l00XFhWNA52LMKyK9XVE7tX0KAZZH80Eb1GNNP0NZWg/edit?disco=AAAAH_E0QeI&resourcekey=0-YxtNisy5p2piIiGyt8Ln8A
https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg#slide=id.gc750b0e181_0_95
https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg#slide=id.gc750b0e181_0_95
https://source.chromium.org/chromium/chromium/src/+/master:third_party/blink/renderer/modules/launch/file_handling_expiry_impl.cc;l=38?q=FileHandlingExpiry&ss=chromium&originalUrl=https:%2F%2Fcs.chromium.org%2Fsearch%2F
https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/web_app_tab_helper.cc;l=102?originalUrl=https:%2F%2Fcs.chromium.org%2F

​ Page 11 of 11

FileHandlerManager::UpdateFileHandlingOriginTrialExpiry handles updating when an
app’s origin trial is going to expire (and registering/unregistering it’s handlers if the trial validity
changed)

References (internal):
●​ Previous (now-deprecated) version of this document
●​ Getting started on File Handling
●​ UX Mocks
●​ Testing and Validation
●​ Manual Test Cases

https://source.chromium.org/chromium/chromium/src/+/master:chrome/browser/web_applications/components/file_handler_manager.cc;l=103?originalUrl=https:%2F%2Fcs.chromium.org%2F
https://docs.google.com/document/d/13O71XW_WoQHzaE-53WxJ6-ciVUjAfzg6iedR2oEye7w/edit#heading=h.xzptrog8pyxf
https://docs.google.com/document/d/1trxmEUFmvjKuplJqiIope1eAN2d0hlhZ6HQac3hKNPw/edit#heading=h.w04k8fjoi9hn
https://docs.google.com/presentation/d/1JJKE7IyWrY37Lf6FhYU-DqtK7LvWIeWbobdgzSo0B-Y/edit?resourcekey=0-WcBd8z0Tcn683-PtD4P9Pg
https://docs.google.com/document/d/1eZWQgEevivs2xQ9kYMG-uRd5xgGSXi1yzjC9R4g580o/edit
https://docs.google.com/spreadsheets/d/1eeQETgwbcWRXR0R2qe4Dza63XY__RLhrhwHnr8Oq5Gg/edit#gid=108095588

	File handling API for​web apps in Chrome​(tinyurl.com/file-handling-design)
	Objective
	Background
	Overview
	Getting file handlers from a web application manifest
	Saving file handlers for an installed app
	Finding out which file handlers are available
	Registering file handlers
	Unregistering file handlers
	Chrome OS-specific code
	Linux-specific code
	Use of MIME Types vs file extensions
	Launching a web app with files
	Sending launched files to a web app
	Manifest Update
	Permissions

	What do we still have to do?
	Dispatch on MIME type
	Linux-specific code
	Mitigations for not being able to dissociate file type associations from web apps on Windows

	Project information
	Privacy and security considerations
	Launch plans
	Origin trials

	References (internal):

