
Pluggable indexes

Problem

Currently, index implementations are chosen in a statically defined way and it isn’t possible for a
Pinot distribution to override a choice of index made in the core open source codebase. Index
implementations need to be both present and wired up in the Pinot codebase in order to be
used.

This prevents several workflows:

1.​ Feature incubation: not all implemented ideas are good, and currently a user would
need to contribute code to Pinot, or maintain a fork, to try an idea. Pluggable index
implementations allows users to incubate ideas before contribution

2.​ Highly specific features: some features are good, but don’t make sense for the OSS
community and would create a maintenance burden. Highly specific use cases cannot
be supported by a Pinot distribution without passing the maintenance burden onto the
OSS community.

3.​ Custom physical representation of data types: being able to override an index
implementation allows alternative physical representations of data types without the rest
of Pinot needing to be aware.

Proposed Design

Allow users to register two factories via pinot-segment-spi:

●​ IndexCreatorProvider
●​ IndexReaderProvider

Default implementations of these interfaces will be provided within pinot-segment-local, via
refactoring existing logic. The default IndexCreatorProvider will be taken from
SegmentColumnarIndexCreator and the implementations of IndexHandler. The default
implementation of IndexReaderProvider will be taken from LoaderUtils and
PhysicalColumnIndexContainer.

Plugins can’t define entirely new index interfaces because the rest of Pinot still needs to know
how to construct and query the indexes, so the Provider interfaces will model existing Pinot
index types. For example, methods will exist on each interface to create a new

ForwardIndexCreator (newForwardIndexCreator) and ForwardIndexReader
(newForwardIndexReader) respectively, and separate methods (new*IndexCreator,
new*IndexReader) to create other kinds of index creators and readers.

Users will generally not wish to override construction or reader creation of every index type and
should not be required to duplicate the default logic. Moreover, when new kinds of indexes are
added to Pinot in the future, meaning new methods are added to IndexCreatorProvider
and IndexReaderProvider, source compatibility of plugins should be maintained.
Therefore, a class inheritance based API is proposed.

It is not anticipated that there will be more than one agent wishing to override index
implementations within a single process, so only one registration of an override is permitted.
Override registration must take place before first use.

	Pluggable indexes
	Problem
	Proposed Design

