Cross-device WebOTP
THIS DOCUMENT IS PUBLIC

Status: Final
Authors: yigu@chromium.org
Last Updated: 2021-06-29

tidr

Backaround
WebOTP API

Precedents

Google Prompts
Google Messages
iMessage

Overview

Detailed Design
Frontend

Backend
Desktop
Android
API
Permission

X Consideration

Android
Option 1: Notification (proposed)
Buttons
Strings
Option 2: Prompt (future extensibility)
Desktop

Option 1: No Ul on desktop
Option 2: Reminder on desktop (considered alternative)

tion 3: Dr wn on kt future extensibilit

Security Considerations

Privacy Considerations
r_permission
API| exposure

Unsuccessful flow
Successful flow

Testing Plan

Considered Alternatives
User Interaction

Where to ask for permission

When to show notification on desktop

How to show notification on desktop

What to show as notification on desktop
One-to-many

Supported platforms

Multiple syncing devices

tl;dr
We plan to support WebOTP API on desktop when both Chrome Desktop and Chrome Android
are logged into the same Google account. A typical flow looks like this:

& Veeh OTF AR Derno x| o+ e = L) =

= = W v B-oAp-de e gl h e

Web OTP API Demo
Send following SMS message to this phone from another one after
pressing “Verify".
Your OTF is: 123456,

Perebi-0tp-demo . glitch, e FIZF3454

Figure 1. Example of using WebOTP across devices. The APl is initially called on the desktop. When the
SMS arrives on the phone with the same Google account, a prompt pops up on the phone to ask for user
permission. Once the permission is granted, the code is forwarded to desktop and sent to the site.

Background

WebOTP API

The WebOTP API gives developers the ability to programmatically read one time code from
specially-formatted SMSes addressed to their origin to reduce user friction. Currently it is only
available on mobile devices where SMS is supported. This document extended the early
exploration and proposed a solution to enable the API on desktop / laptop through the Sharing
infrastructure.

7. Encrypted message

-~ q"“‘“*—-h__x__ /
/ 1. Regisier__.__.._.:;;;:I'.'.:'_'.'J-'

Firebase

:'.::'_'.:Z'.'-3'-'-'--'.'."5 FCM token
."f % 3. Generate 6. FCM token / G@

8. Decrypt into oy o keys + encrypted message
action specific metadata | |'| (action specific metadata)

A keys and

FCM token from
synced pref

8. Take action J
(e.g. phone call) | 4. Store keys
- and FCM

e oo \0\ 4

Figure 2. Sharing architecture

Chrome Sync

Precedents

There are three related precedents that sync information between desktop and mobile.

https://drive.google.com/file/d/11ROBs3wMqa8jXApedjfOWLIN-VVHZY2v/view?usp=sharing
https://wicg.github.io/web-otp/
https://docs.google.com/document/d/1da8CjO71DlFbBzDcSosFRXTvDsKII_XMCohpZLQ_QbM/edit
https://docs.google.com/document/d/1da8CjO71DlFbBzDcSosFRXTvDsKII_XMCohpZLQ_QbM/edit

Google Prompts

G sar x B °

& accounts.google.com/Servicelogin/signine * @ 0 = B W@ 2

Google
Choose an account
D 1 aicon

@ Use another account

& Remove an account

English (United Sanles) =

Figure 3. Gmail login via Google Prompts

e Verifies user’s identity on mobile devices via a full screen prompt.
e A typical flow goes like this (user actions in bold):
a. User triggers verification on desktop
b. Google triggers prompt on linked phone
c. User unlocks phone and grants permission
d. Useris logged in and navigated away automatically on desktop

Google Messages

e Allows a user to forward their SMS from Android to web (Chrome, Firefox, Safari Edge
etc.)
e 1 phone to 1 desktop tab. No login needed. Permission is revoked when tab is closed /
manual sign out / inactive for weeks (see here for more details)
o Users can then go to the messages tab to copy the OTP

https://support.google.com/accounts/answer/7026266?co=GENIE.Platform%3DAndroid&hl=en
https://messages.google.com/
https://docs.google.com/presentation/d/15C8YogJZ387hgsn0CRRPerirW64OqQKK0WuopFqzMoo/edit?resourcekey=0-RMC7YfWOzJ7Vr_CDDj0bbg#slide=id.gc9c30cd8ec_0_404

QO =
!
‘ Scott Flearr
a smarcs

<o

Figure 4. Messages received on Android get auto-synced to a tab via Google Messages

iIMessage

e Allows a user to forward their iMessage from iPhone to Mac
e Bound to Apple id

e With this feature, Safari on Mac can autofill one time code that is received on iPhone.

Verify your phone number

Enter the 6-dig you received

B-digit code*

Figure 5. Autofill SMS OTP on Mac with iMessages auto-sync enabled

e A typical flow goes like this (user actions in bold):
a. User turns on SMS auto-sync from iPhone
b. User verifies identity on Mac
c. SMS arrives on iPhone

https://support.apple.com/en-ca/HT202549
https://support.apple.com/en-in/guide/safari/ibrwa4a6c6c6/mac

SMS is forwarded to Mac

User focuses on a specific input field autocomplete="one-time-code”
A chip appears with expected OTP

User taps the OTP to fill it into the input field

User submits the form on the website

S@ "o a

When a user needs to enter the SMS verification code on desktop they could either memorize
the code and enter it manually or use either the Google Messages or iMessages formulation.
Note that both techniques require pre-setup by users. i.e. it’s “opt-in” and users are aware.
With proper setup, for iPhone users autofill is just one tap while Android users need to go to the
message tab and copy the code from there.

In this document we propose a verification process with minimal friction for Chrome users.

Overview

The Sharing service allows different devices connected via the same Google account to sync
data in a safe and fast manner. Data is sent using Firebase Cloud Messaging (FCM) with
end-to-end encryption. Based on this infrastructure, we introduced a sender on desktop and a
receiver on mobile for the request. Then a sender on mobile and receiver on desktop for the
response.

go/unido
Android Chrome Chrome example.
on on com
Phone Desktop

Server-side out-of-band SMS sent
Figure 6. Integration of Sharing with WebOTP at a glance

Proposed verification flow

There are several decision points during the process, from how many accounts we support to
how users grant permissions. Figure 7 shows how we made the decisions.

Verification flow for cross-device WebOTP

Multiple signed-in

This could lead to serious privacy

accounts . violations. With “something you i
—No Q Active profile i Do e b Rert;;m OTP to callbsll&
(I 1) access to "something you have” Verification via WebOTP "
e AP, with this formulation. succeeded
C) slect accoun Pros
Chrome Sync is available for = Les§ user friction - ;

all accounts on desktop ° On Desktop Cons: Verification via WebOTP.
but only for 1 account on Uves - Adds friction § Reles onnotiicaionSeting declined Yes

Android - Adds complexity - Local attack vectors
I No

gchromeDesktop ° Wait for SMS “0 £l

) Multiple syncing X

Supporting WebOTP on devices v -
tablets or different phones

Title: Tap to verify your phone number
on deskiop
Text: example.com sent you an SMS

T
eg.

) User grants

° Tap to verify — ’{mssiun

Yes

may be lack of demand
and will add complexity .
P " Request
0 Desktop only v & 1one unlocked > permnssaign per
R available one y

Allow
Ves — - Adds friction
- Timing is tricky

Figure 7. Decision making for cross-device WebOTP verification flow (click here to see details)

MS arrives on Request user
Android

permission

¢

N

device

store alist of trusted remote devices by their guid to
prevent privilege escalation.

We will swich to this model if it meest privacy /

Stores the choice in chromes//settings. Also need to
security bars,

Based on the proposed design, the user journey is described as follows:

1. User opens Chrome on desktop and they have a signed-in account as the active profile.

2. User visits a site that calls the WebOTP API for verification

3. If the user has a mobile Chrome on a sms-capable phone and has signed in the same
account, desktop Chrome automatically asks mobile Chrome to listen for SMS on the
phone under the same account

4. Mobile Chrome receives the expected SMS (using existing WebOTP backend in
Chrome)

5. Mobile Chrome checks the origin after parsing the SMS. If it matches the expected one
then shows a prompt to ask for user permission.

6. User taps the “ok” button on notification to continue which forwards the origin and one
time code to desktop

7. Desktop checks the origin again and if it matches the expected one then shares the
code with the site.

8. The user is successfully verified

For code complexity reasons, in this proposal we assume:

N

Non-desktop devices such as tablet are not supported

2. User cannot select which account to use if multiple accounts are signed in on desktop.
3. User cannot select which phone to use for cross-device WebOTP if they have multiple
mobile devices under the same account

Note that supporting WebOTP on desktop is a pure improvement compared to manually

https://drive.google.com/file/d/1EAroI39N6P2dHVXPjm2Xks78r7W5oT03/view

entering a code. Our strategy is to enable it for common cases and expand over time based on
demand/cost trade-off (e.g., mobile only -> desktop to mobile -> multiple devices...).

To reduce user friction from unlocking their phone each time they receive an SMS, we could
memorize user’s choice with the following caveats:

e Permission is revocable (via chrome://settings manually or auto expire)

e API calls on new desktop require user’s interaction on Android
However we leave this as future improvement beyond dev-trials.

Detailed Design

Frontend

We show a notification when expected SMS arrives and users can grant permission to forward
the code to the desktop by tapping it after unlocking the phone. See UX considerations for more
details on the front end.

Backend

The desktop and android instances communicate via the sharing service. The data is
transferred as shown below.

Nooabkwbd -~

@

. Subscribe———p»-
WebOTPService ubser
¢——NotifyReceive

®

SmsFetcher

f |
Return code
@ Cal

| AP + ® OnRemote FetchRemoteSms
API callsite
®
Legend
[Desktc?p Response
1 Android
@ Request
Asks for permission
-4 Preparation
Grants permission
A
* Yy
® SmsFetcherHandler::Request
Listens for Sms Returns value
NotifyReceive Subscribe @
v @ | v
OnReceive—p»|
SmsProvider SmsFetcher
-4——Retrieve
®

Figure 8. Cross-device WebOTP architecture

A user visits a website that calls the WebOTP API.

A WebOTPService is created on desktop and is subscribed by SmsFetcher

The SmsFetcher on desktop sends a request to the linked phone via Sharing Service
The SmsFetcher on Android subscribes to the incoming Request

It then asks SmsProvider to listen for incoming SMS

Android native returns the origin and OTP to SmsProvider

SmsProvider forwards the results back to SmsFetcher

8. Before sending the information back to desktop, we show a native prompt to ask for user
permission on Android

9. User grants permission on the native

10. The origin and OTP are sent back to SmsFetcher on desktop via Sharing Service

11. SmsFetcher on desktop then notify the WebOTPService with OTP is the returned origin
matches the call site

12. WebOTPService returns the code back to the website to finish the verification process

Desktop

When the API is called, "WebOTPService™ as an "SmsFetcher::Subscriber™ will try to fetch an
SMS from a remote device. We create a ‘chrome_browser_sharing::SharingMessage™ with the
expected “origin’ and send it to the first available syncing mobile device via
‘SendMessageToDevice'. It takes a response callback that receives the data from remote.
Meanwhile, a notification pops up on omnibox to remind users to interact on mobile.

Once the "SmsFetcher’ acquires origin and one time code, it first checks whether the received
origin is expected. If so, it passes the code to "WebOTPService™ which sends the code to the
call site.

Android

API

There are currently two types of backends on Android that the WebOTP API is running on. The
default backend prior to M90 is based on UserConsentAPI. An Android native permission
prompt is required to grant Chrome access to the SMS. We are migrating to a new backend
based on CodeBrowserAPI via Finch and it's expected to be shipped in MO0 (see here for
improvements). Note that even after M90 there will still be Chrome running with the old backend
because we use it as a fallback solution when the new backend is unavailable for some users.
e.g Chrome is not the default browser, play service is out of date etc.

The User Consent API requires an Android naive permission prompt which introduces extra
complexity and user friction. Given that this will be a fallback backend with little usage, we only
support mobile Chrome that runs with the new backendl.

Permission

When mobile chrome receives the expected SMS, ‘SmsProvider’ parses it and sends the
‘origin® and ‘one_time_code’ to ‘SmsFetcherimpl’. If the “origin” is in the subscriber list, the
corresponding subscriber ‘SmsFetcherHandler::Request’ will take the pair and initiate a
permission prompt on Android via *SmsFetcherMessageHandler'. Upon user granting
permission, ‘SmsFetcherHandler::Request™ packs the origin and code into the response
message and sends it back to desktop Chrome via Sharing service.

https://developers.google.com/identity/sms-retriever/user-consent/overview
https://developers.google.com/android/reference/com/google/android/gms/auth/api/phone/SmsCodeBrowserClient
https://docs.google.com/document/d/1tZ902rI653QU02vXwf8zO_t5taFCnLBMrGsa3UyTCG0/edit?resourcekey=0-JVXOWZYINiDl72rrSE8bKg

UX Considerations

We have been running a dev-trial with the proposed UX. There are some other UX flows that we
have been thinking about. At the moment we believe that users have to grant permission on the
phone for privacy reasons. This aligns with the “something you have” concept in the 2-factor
authentication. See below for the considered options.

Android

Option 1: Notification (proposed)

As shown from the proposed UX, when the expected SMS arrives at the phone, we show a
notification on the top and users can interact with it to grant permission to forward the OTP to
the desktop.
e Note that it may overlap with the Android SMS notification which also appears on the top
of the screen when the phone is unlocked.
o We could delay showing the notification by 1-2 seconds to make sure it appears
on top of the SMS notification.
e We propose to show [CODE] + [ORIGIN] + [REMOTE DEVICE] in the notification. See
example below.

Buttons

To grant permission, users have to explicitly click the OK button on the natification. In
previous iterations we only asked users to “tap” the notification to grant permission but it was
too frictionless such that users may accidentally approve it which negates the value of 2FA.

There are two options in general:
e Two buttons (Yes/No or Allow/Deny based on how we describe to the users)
e Single button (Yes or Allow) and keep “swiping away or ignore” as the negative signal

Strings

To show the remote device information to the user, we could choose from one of the following:
based on the Sharing infrastructure: manufacture name, model name, client name or OS info.
e Manufacturer name. e.g. Apple Inc.
o It's hard to integrate this name with a proper string
o Not applicable to certain customized computers
e Client name
o Pros:
m Consistent with other Sharing features (shared clipboard, click to call etc.)
m Recognizable if customized. e.g. Jane Doe’s Macbook
o Cons:
m This identifier is not recognizable by users which could be confusing

e Hewlett-Packard Computer HP Z840 Workstation
e MacBookProil4,3
e LENOVO Computer 20216
m Unlike other features, WebOTP needs to show an origin and a one time
code in addition to the client name. This may be too much for a
notification element.
e Model name. Similar to the client name, this may not be recognizable:
o HP Z840 Workstation
o MacBookProi4,3
o 20216
e OSinfo.e.g.mac, linux
o This is vague but acceptable given the fact that the user has enough context on
the operation.

Examples

9518

Mon, Jun 21 @ 78°F

E] Clankium = 1m

Submit 123456 on MacBookPro14,3
Let web-otp-demo.glitch.me verify it's you

Figure 9. Notification when phone is locked (string TBD)

Clear all

Figure 10. Notification when phone is unlocked

Option 2: Prompt (future extensibility)

Similar to Google Prompts, instead of the notification (small room for necessary information), we
could show a full screen prompt to ask for user permission like the following (new string
required)

Google

Verify your identity

Your computer wants to use this device to
sign in with a one-time passcode “123456"

Figure 11. Full screen notification on Android to ask for user permission

However, this prompt is from GMSCore and Chrome cannot trigger it directly. Similar to PaaSK,
we could trigger it via a native notification. i.e. user clicks the notification first to see the full
screen prompt and they grant permission to forward the OTP to the desktop from there.
e This requires two taps on the phone which leads to more friction than the previous
solution.
e Mitigation
o We are trying to bypass the tapping on the notification. This requires Chrome to
be granted some permissions such as START_ACTIVITIES_ FROM_BACKGROUND or
SYSTEM_ALERT_WINDOW. It benefits PaaSK and will be consistent with Google
Prompts which brings unified verification / authentication experience for users.
However, given that Android is restricting access to sensitive permissions
for Apps, this work may take an unknown amount of time.

https://docs.google.com/document/d/1FEkOs_4vA_JEt52kFANBb5YOZU1wb9lg0TTuk79j1nE/edit?resourcekey=0-K4Lx2ySECVxZir-EvsVaZA#heading=h.xl2a3v39r2z
https://docs.google.com/presentation/d/1zZcfcIN2QxxHDBqQt0SJ8UtSPwgPmJx_3MwkOFpOQf8/edit#slide=id.gd772dd735f_0_48

Desktop

Option 1: No Ul (proposed)

On the one hand, with the proposed flow, given that users need to interact on the phone to grant
permission, they are fairly aware (with proper strings) of the fact that Chrome is assisting them
with identity verification. Therefore, showing Ul before user action on Android is not
necessary.

On the other hand, when OTP is received on the desktop, the user is likely to be navigated
away to a different page. If we decided to show a confirmation Ul, it must persist across
navigation in order for them to read it. Showing a confirmation Ul on the different site, may
cause the false perception that Chrome has shared some of their data to it.

Option 2: Reminder on desktop (considered alternative)

Technically speaking we could remind users on desktop that Chrome is assisting them to
automate the verification process.
e Upon APl is called
o Let users know that Chrome on Android is able to automatically send OTP to
desktop upon their permission
m Other features such as “click to call”, “shared clipboard” show a
notification on the omnibox. See examples here.
= An alternative would be showing notification inline with the input box
e However, at the moment the WebOTP API doesn’t know about
which field is for OTP therefore we don’t know where to show the
reminder
m Another alternative would be showing a modal on the page
e According to the partner feedback from Origin Trial, this may
interrupt users from doing other activities on the page, e.g. they
may fill up other forms while waiting for the SMS

Constraints:
There are some limitations of the WebOTP API at the moment:
e |t doesn’t know about which field on the page is the OTP field. As a matter of fact, the
API was designed in a way that it works without an input field.

o This constraint makes it really difficult to show any inlined Ul.

o Mitigation: We could update the API surface to accept an OTP field.

e The Sharing service cannot tell whether the user provided phone number matches the
linked mobile device.

o This leads to misleading information. e.g. the phone number of the account’s
linked device is 1234-5678 and the user enters 8765-4321 on the page for
verification. If we remind them that they could interact with a Chrome prompt on
their phone to automate the process, we are misleading the user. Because they

https://docs.google.com/presentation/d/1O3yGR6lJ_VCJYNWHxJXY1NM45khO2IknBoZhps5yo4U/edit?resourcekey=0-cIeoPLOMzLj0RUTMyteoJg#slide=id.gd4a3e7f494_0_0
https://docs.google.com/presentation/d/1s35L7QC6n7Pi3G0JmMIJOLHbxtOV1uXv-PeOFGs0MKw/edit#slide=id.g5ea01824bb_0_117

can only see the prompt when the SMS arrives at the linked phone with number
1234-5678.

o Mitigation: We could only show the “done” reminder when desktop chrome
receives the OTP from mobile.

Option 3: Dropdown on desktop (future extensibility)

As shown above, Safari allows users to see the OTP when they focus on the OTP field on Mac.
Instead of sending the OTP back to the website automatically, they ask users to click a
dropdown pill and then submit the code manually.

Constraints:

e This solution is based on the fact that users have already turned on iMessage auto-sync
from their iPhone to desktop. i.e. users do not need to grant permission on their phone.
However, our current solution requires users to interact with the phone for privacy
reasons. i.e. to implement the dropdown solution we have to ask users to interact on
desktop again and “two permissions” makes less sense than “one permission” (either on
mobile or desktop).

o Mitigation: We are exploring the possibility of bypassing the interaction on the
phone for Android users. Similar to Google Messages, we could allow users to
remember remote desktop on mobile after the first interaction. Requests from the
same trusted desktop in the near future can bypass the permission on mobile.
There are privacy implications with this solution. See here for details.

e This solution is gated by the user focusing on the input box which normally is the last
step after the user has obtained the OTP manually.

o Mitigation: We could remind users to focus on the OTP field instead of obtaining
it by themselves. Note that we should only remind users when desktop Chrome
has received the OTP from mobile.

Security Considerations

The Sharing infrastructure uses end to end encryption, so the one-time-code cannot be read
anywhere along the network, not even by FCM. For further details see here.

e There are two types of requests during the cross-device verification process.
1. Chrome requests Sharing service to communicate with other devices
2. Chrome requests Android to listen for SMS
Both requests are initiated from the browser process.

e Consider the two scenarios:
o Desktop -> Mobile (ask mobile to listen for incoming SMS with expected |origin|)
m Compromised desktop instance
o Mobile -> Desktop (parse SMS, if the parsed origin matches then send code to
desktop)

https://docs.google.com/document/d/1FEkOs_4vA_JEt52kFANBb5YOZU1wb9lg0TTuk79j1nE/edit?resourcekey=0-K4Lx2ySECVxZir-EvsVaZA#heading=h.tmqldm62yyv7
https://docs.google.com/document/d/1FEkOs_4vA_JEt52kFANBb5YOZU1wb9lg0TTuk79j1nE/edit?resourcekey=0-K4Lx2ySECVxZir-EvsVaZA#heading=h.aw3j84xaxrwh
https://docs.google.com/document/d/1FEkOs_4vA_JEt52kFANBb5YOZU1wb9lg0TTuk79j1nE/edit?resourcekey=0-K4Lx2ySECVxZir-EvsVaZA#heading=h.aw7ucxbb9tt6
http://go/unido-security

m Compromised mobile instance
o In these two scenarios, the added risk is marginal and below our threshold of
concern. E.g, if desktop Chrome is compromised, the attacker is able to steal the
OTP and use it to log into the victim’s account. However, the attacker can already
do such damages or even worse ones without OTP and without the new
functionality.

Note that offline devices will not receive requests from other devices.

Privacy Considerations

In general, the sharing infrastructure does not disclose the origin and one-time-code without
explicit user consent. For further details on Sharing see here.

The general WebOTP API binds a user with their phone number when the user completes the
verification process. i.e. the site learns about such combinations when the one time code is
returned by Chrome. Note that this only happens when the user explicitly allows the verification
flow provided by Chrome.

With cross-device support, the user’s Google account is also involved in the process. However,
this is not new information for the sites regardless of federated login.

User permission

The major question to answer is at which point in the OTP verification process the user
permission grant is requested. There are two possible options:
e Ask for user permission on Android

o Pros
m Better privacy
o Cons

m Add another layer of friction since the user needs to unlock the phone
e Mitigation 1: Ask for permission once and remember user
selection with two caveats:
o Permission is revocable (via chrome://settings manually or
auto expire)
o API calls on new desktop require user’s interaction on
Android
e Mitigation 2: Allow users to grant permission on locked phone
o This somehow breaks the “something you have” in 2SV.
Ideally the site is expecting “something you have access
to” but this formulation changes it to “something you have

https://docs.google.com/document/d/1tvrKCEOaQuZv_j6j61ij_r9sjFlI25x8M8rIRL1DTsA/edit#heading=h.qjpzx8d6k7t5

with you”.
e Ask for user permission on desktop

o Pros
m Fast and instant
o Cons

m Anyone who can access the computer can complete phone number
verification without possessing the phone

As mentioned in the background section, both Android and iOS support syncing messages
to desktop without recurring permission request on the phone. i.e. with proper setup, the SMS
can be forwarded to the desktop even when the phone is locked or not nearby. It highly
reduces the potential user friction because unlocking the phone and granting permission every
time negates the user convenience of using the feature.

However, bypassing the interactions on mobile allows local attackers to finish the verification
without the phone owner’s awareness. e.g. a kid can use the parent’s desktop to buy things if
the payment is guarded by phone number verification. Similarly, anyone who has access to the
desktop can sign up on random websites using the linked phone number.

In addition, this may lead to privilege escalation where a remote attacker compromises the
user’s google credentials. Previously they only possessed “something you know” and 2SV is
able to protect the user. But bypassing user interaction on Android means they will also
“possess” the “something you have” implicitly.

Therefore we propose to ask for user permission on Android.

APl exposure

Unlike Android users, desktop users may not be able to use WebOTP if they do not sign in or
have syncing phones. In this case, exposing window.0TPCredentials to the websites on
desktop may lead to privacy issues without proper strategy.

Unsuccessful flow

If the verification flow is not completed, the website won’t learn anything from the user. e.g. if the
user never sees the Android notification (because they are not signed in or they don't have
linked phones etc.), or they dismiss / ignore the notification, we do not reject the promise
immediately. Rather, we wait for 4 mins and send a unified "Timeout" message back to the
website.

Successful flow

If the user grants permission and completes the verification process via WebOTP API. The
website can learn extra information about the user (basically the requirements of using this API):

e The useris using Chrome

o This info is available by other means
e The useris signed in to Chrome with a Google account

o This info is available by other means

o The website shouldn’t know about which Google account it is
e The provided phone number is linked to that Google account

o This info shouldn’t be useful to the website

Testing

We have automated unit tests, browser tests and WPT tests to protect us from regressions.
Here are the requirements for manual tests.

Desktop requirements

e Google Chrome (version >= 93.0.4555.0)
o Other Chromium based browsers are not supported at the moment
e User is signed in with their Google credentials via https://myaccount.google.com/
o No need to turn on “Sync”
o It could be a typical gmail account or other Google managed accounts such as
some university email accounts
o If multiple accounts are signed in, only the primary account (as shown in
chrome://settings/) will be used. To use other account, users have to add a new
profile for that account to make it the primary account under that profile
e \Validation
o Go to chrome://sync-internals/
o The “Transport State” under “Summary” (top left) should be “Active”

Android requirements

e Google Chrome (version >= 93.0.4555.0)
o Other Chromium based browsers are not supported at the moment
Chrome is set to the default browser
User is signed into Chrome with the same Google credentials as the one on desktop
o No need to turn on “Sync”
e User is signed into Android via “Settings->Google”
o Multiple accounts are OK. Similar to desktop, only the primary account in Chrome
(as shown in 3 dots -> settings) will be used
e Go to the Settings > Apps & notifications to check the Google Play services version, it
should be >=20.30.12
e Validation
o Go to chrome://sync-internals/

https://myaccount.google.com/

o The “Transport State” under “Summary” (top left) should be “Active”

Basic flow

1.

On desktop Chrome, visits https://web-otp-demo.glitch.me in a normal window and tap
“Verify”
o The feature does not work in incognito mode.

2. On Android, makes sure Chrome is running (foreground or background) as the default
browser
3. Sends the following SMS to the testing phone from step 2:
o @web-otp-demo.glitch.me #123456
o The sender cannot be on the receiver’s contact list
o https://voice.google.com/ supports sending SMSes
4. When the SMS arrives, an extra notification will show up. Example here.
5. Taps “Submit” (unlock the phone if needed)
6. The notification disappears and the verification page on desktop Chrome is
auto-progressed to the “Success” page.
Caveats

This feature works the best when users have only one signed-in mobile device and there is only
one Chrome client on that phone. This is because

a. Users cannot choose which end client that they want to use
b. Client selection by Sharing service is transparent to users. It auto chooses the one that
updates the entry in the Sharing service the last.
c. Chrome on Android has to be the default browser.
Examples:

A user has both Chrome Stable (default browser) and Chrome Beta on the same mobile
device. If they only launch Stable, everything works fine. If they launch Beta after that, it
may not be working because now Chrome on desktop may send the request to Chrome
Beta on Android which is a deadend.

A user has two phones. They first launch Chrome (default browser) on device A and
launch Chrome (default browser) on device B. Now the request from desktop goes to
device B. It's not obvious to users how to reuse device A for this functionality. They could
close Chrome on both devices and relaunch Chrome on device A but that seems like
overkill.

This is considered acceptable in the initial launch and we will reevaluate the situation with
metrics post launch. For testing purposes, one can go to chrome://sync-internals/ on the
desired phone or Chrome client and tap “Stop Sync (Keep Data)” then tap “Request
Start” to make the Sharing service use this phone or Chrome client.

https://web-otp-demo.glitch.me
https://voice.google.com/

Considered Alternatives

This section captures brainstorming on a variety of topics related to this project. In particular, we
have considered whether to support multiple platforms / accounts / devices and how users
should get involved in the process.

User Interaction

Where to ask for permission
Interactions on Android (this proposal)

On desktop (see below)

Figure 13. Bypassing the interaction on Android and asking for user permission on desktop

1. User opens Chrome on desktop and they have a signed-in account as the active profile.

2. User visits a site and it calls WebOTP API

3. If the user has a mobile Chrome on a sms-capable phone and has signed in the same
account, desktop Chrome automatically asks mobile Chrome to listen for SMS on the
phone under the same account

4. Mobile Chrome receives the expected SMS (using existing WebOTP backend in
Chrome)

5. Mobile Chrome checks the origin after parsing the SMS. If it matches the expected one
then forwards the SMS to desktop

6. Desktop checks the origin again and if it matches the expected one then shows a prompt
to ask for user permission to share the code with the site.

7. Desktop sends the code to the web site upon user granting permission

XL_API

CALL DEVICE

B SeND MESsAGE

& Web OTP API Demo x -+ ° - a x Extended controls - Pixel_3
&€ > C & web-otp-demo.glitch.me * A i.. H 9
(650) 555-1212
Web OTP API Demo o
4
Send following SMS message to this phone from another one
e e rify
after pressing "Verify". . Your OTP is: 123456
(-] @web-otp-demo.glitch.me #123456
Your OTP is: 123456.
.
@web-otp-demo.glitch.me #123456
(-]
[0 VERIFY 8
L]
0
o
Lo]
-
<
]

https://drive.google.com/file/d/1oJ_Ts2JajnoX3CpqbMUyfim5LHzGjIYs/view?usp=sharing

Mitigations:

e Chrome on Android only forwards the one time code when the origin in the SMS
matches the requested origin. e.g. while the phone is listening per desktop’s request, the
user receives a personal SMS “Hello....” and the expected verification SMS
“@example.com #1234”. Only the code “1234” is sent to desktop if the user is trying to
verify on example.com.

e After Chrome on desktop receives the code, it explicitly asks the user for permission to
send the code to the site to finish the verification flow. This step is the same as WebOTP

on Android.
e Notify the user on Android with drop-down notification (see example below)

TELUS 92% Wl 10:14

v ‘ e I O

Sat, Feb 27 e v

L0 Clankium + 16h

Verify your phone number on desktop ?

https://yi-gu.github.io sent you an SMS &)
CLEAR ALL

< O O
Figure 14. Notification that keeps users informed (exact string TBD)
Some notes:

e Chrome on Android learns about the expected SMS immediately after the SMS arrives
because it's allowlisted on Android’.

' This only applies to SMS with expected format “@exmaple.com #1234”. i.e. Chrome cannot see any
other SMSes received on the phone. More details here.

https://developers.google.com/android/reference/com/google/android/gms/auth/api/phone/SmsCodeBrowserClient

When to show naotification on desktop

e When APl is called
e \When SMS is received

How to show notification on desktop

e Ommibox icon
e Centered modal
o Interaction is blocking
o Interfere with existing form filling

Verify your phone number

123456 is your code for web-otp-demo.glitch.me

AR RS W SR)W ¥ W

B-diait code* ‘

What to show as notification on desktop

e Ask whether user wants Chrome to verify phone number for example.com
o Note that Chrome on Android has already obtained the SMS code by now
m This is not concerning because the potential threat is exposing the
interaction to the site instead of Chrome’s awareness of the code.

One-to-many

Supported platforms

Currently the use case is focused on desktop users. Should we also support other Android
devices such as tablets or different phones?

e Pros
o Better ecosystem with the truly “cross-device” support
e Cons

o Lack of demand?
o Increased implementation complexity

Multiple syncing devices

e Should we allow users to select which device (phone) they want to use?

o Pros
m User has more control
o Cons

m Adds frictions
m Timing is tricky. Only works when selecting a device before asking the site
to send out SMS

Ul

“ ¥ R100%

’ Internet * Bluetooth

(® Do Not Disturb

(650) 5551212 - Messages - now N s
rcode is 123456

otp-demo.glitch.me #123456

Mark as read

kium * now #
¢
Submit 123456 on
Hewlett-Packard Computer ...

Let web-otp-demo.glitch.me verify it's you

Submit Cancel

Manage

	Cross-device WebOTP
	tl;dr
	Background
	WebOTP API
	Precedents
	Google Prompts
	Google Messages
	iMessage

	Overview
	Detailed Design
	Frontend
	Backend
	
	Desktop
	Android
	API
	Permission

	UX Considerations
	Android
	Option 1: Notification (proposed)
	Buttons
	Strings
	Examples

	Option 2: Prompt (future extensibility)

	Desktop
	Option 1: No UI (proposed)
	Option 2: Reminder on desktop (considered alternative)
	Option 3: Dropdown on desktop (future extensibility)

	Security Considerations
	Privacy Considerations
	User permission
	API exposure
	Unsuccessful flow
	Successful flow

	Testing
	Desktop requirements
	Android requirements
	Basic flow
	Caveats

	Considered Alternatives
	User Interaction
	Where to ask for permission
	When to show notification on desktop
	How to show notification on desktop
	What to show as notification on desktop

	One-to-many
	Supported platforms
	Multiple syncing devices

	UI

