Tango with Django (with Stijn)
— https://docs.djangoproject.com

Flask: Microframework, good for no models and quick web stuffz. / http://flask.pocoo.org/
e Stijn used for APIs, you may not need models.

PIP: Python Package Index — use virtualenv to manage various Django installations and
versions. / http://pypi.python.org/pypi/pip Equivalent of Ruby’s RVM.
e C(Create virtual environment
o mkvirtualenv <name of project> --no-site-packages
e Activate the virtual environment
o source env/bin/activate
e Setup alias!
o Edit .bash_profile
m alias workon='source env/bin/activate'
o Now to activate your project environment, type:
m workon <name of project>
e Install Django & other infrastructure
o pip install django

Django extensions: very useful! Stijn will come back to this later.

requirements.txt
e Togetalistofallinstalled, type pip freeze.
e pip freeze > requirements.txt — Pipe your contents into requirements.txt
e pip install -r requirements.txt — Installs all app requirements / dependencies.

For larger projects:
e common.txt
e development.txt — Django extensions, debugging
e production.txt — gunicorn: Server that is only used in production.

Deployment: can be as hard or as easy as you want.
e BASICS: Do it in the very same way you install something locally.
e Use different servers:

o Frontend — serve lots of requests at the same time and protect backend app. If
frontend getting hammered, only send a couple requests to backedn. Ideal
frontend server is nginx.

o Backend — use gunicorn port of Unicorn in Ruby world (!!) instead of python
manage.py runserver. Install with pip.

m Uwgsi/ Nginx module that replaces gunicorn.
e What about Git? If you have shell access on server, just SSH login to server, pull your
repository. Create virtualenv there. Use this env to install requirements. Run server

https://docs.djangoproject.com
http://flask.pocoo.org/
http://pypi.python.org/pypi/pip
http://nginx.net/

with gunicorn.

o Ways to make this easier: Fabric, like Capistrano. — Deployment tool,
abstraction of this parent bullet.
pip install fabric
Fabric just consists of file with functions in it: RUN, which will run something on
remote server specified. And LOCAL.
Docs: http://docs.fabfile.org/en/1.2.2/index.html
http://www.slideshare.net/andymccurdy/python-deployment-with-fabric [Slide
171
fabfile.py in project directory.
fab list — list of available methods, which are the ones you've written.

O

Fixtures!
Often when you are writing an app, you will need test data. Most people use Django admin
and enter information in there -- which serves as test data. But problem is when you delete
your db or someone else installs your app, or if you update your models and re-generate your
database.

e South: Migration tool / http://south.aeracode.org/

e fixture gen. —

https://github.com/kzhu91/roundtable/blob/master/issues/fixture_gen.py
e Tool called Fixture generator.

Two ways to create fixtures:
1. Standard but sucky

python manage.py dumpdata — dumps JSON.
Then pump this into a file: initial.json.
python manage.py loaddata initial.json

Annoyances: you don't have control over what's in your fixture or flexibility to change.
Hence, fixture generator!

2. Better way: use fixture generator — https://github.com/alex/django-fixture-generator

pip install fixturegenerator
python manage.py generatefixture

Uses a decorator -- function that changes function into another function.

If you've installed fixture-generator and added to INSTALLED_APPS in settings.py,
issues.test_users. It will generate same JSON, but now, instead of having to edit the JSON, you
can just very easily edit the fixture_gen.py.

Then you can just type fab reset. Now you have a fresh db with the initial data.

http://www.slideshare.net/andymccurdy/python-deployment-with-fabric
http://south.aeracode.org/
http://fixture_gen.py
https://github.com/kzhu91/roundtable/blob/master/issues/fixture_gen.py
https://github.com/alex/django-fixture-generator

South: Database migrations
Tad different if you're using from existing app or from a fresh start.

New project, new app. Then install South (with pip).
pip install south

In settings.py, we add South to INSTALLED_APPS.

python manage.py schemamigration
--initial — pumps to file (?)
--auto — shows your migrations?

Other cool stuff

e Hate writing regular expressions when specifying Django urls? Try the surlex module.

e Deploying stuff? Learn about NGINX, gunicorn, upstart and fabric.

e Want some help debugging? Install django-extensions, which gives you two new
management commands: python manage.py runserver_plus and python
manage.py shell plus. runserver_plus is justlike runserver, but it will give you an
interactive debugging console right in the browser whenever you make an error, so you
can investigate what’s going wrong. shell plus is like the regular shell command, but
it preloads all your models, so you don’t have to import anything before you can start
playing around with your models and your data.

An overview of some commands

create a virtual environment

mkdir myproj; cd myproj

virtualenv env --no-site-packages

activate it

source env/bin/activate

(a shortcut, because you'll use this a lot -- add to your ~/.bashrc)
alias workon="source env/bin/activate"

installing software with pip

pip install django; pip install south; pip install django-extensions;
list all the software in your virtual environment

pip freeze

save that software into a requirements file

pip freeze > requirements.txt

install software from a requirements file

pip install -r requirements.txt

generate fixtures from a populated database

http://manage.py
http://manage.py

python manage.py dumpdata

generate fixtures with django-fixture-generator
python manage.py generate fixture issues.test users
working with south

python manage.py schemamigration myapp --initial
python manage.py schemamigration myapp --auto

a list of all the commands in your Fabric fabfile
fab --list

	Other cool stuff
	An overview of some commands

