DeDAUBP DEDAUB.. COM

JdAMM Finance Audit

Smart Contract Security Assessment

Jun 13, 2022

DeDAUBP DEDAUB.. COM

ABSTRACT

Dedaub was commissioned to perform a security audit on System9’s dAMM smart
contracts at commit hash 3d59c¢5c055884122ecc5e7bf6£446205912bad9c. The audit
scope was limited in size and included the following two files:

e contracts/ComptrollerG7.sol

e contracts/ComptrollerStorage.sol

Two auditors worked on the audit for 3 days. Given that the protocol contracts are a fork
of Compound, the subject of the audit were the introduced changes (delta) in the files
listed above and most of the audit effort was expended on the security of the new
whitelisting feature. As such, this audit was fairly localized and was not concerned about
potential issues in the rest of the protocol.

SETTING & CAVEATS

System9’s dAMM protocol is a lending protocol, which allows borrowers to have
under-collateralized loans. The protocol is a fork of Compound, and builds on top of it by
adding a whitelisting layer to control who and how much one can borrow. Unlike
borrowing, liquidity provision is entirely permissionless, and lending pool participants
enjoy yield rewards.

VULNERABILITIES & FUNCTIONAL ISSUES

This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category | Description

CRITICAL | Can be profitably exploited by any knowledgeable third party
attacker to drain a portion of the system’s or users’ funds OR the
contract does not function as intended and severe loss of funds

DeDAUBP DEDAUB.. COM

may result.

HIGH Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

Examples:

01) User or system funds can be lost when third party systems
misbehave.

02) DoS, under specific conditions.

03) Part of the functionality becomes unusable due to programming

error.

LOW Examples:

01) Breaking important system invariants, but without apparent
consequences.

02) Buggy functionality for trusted users where a workaround exists.
03) Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY

[No critical severity issues]

HIGH SEVERITY:

ID Description STATUS

CToken liquidateBorrow will always fail in the context of a
H1 RESOLVED

CToken liquidation

The external entry point for liquidations in either CEther or CExc20 is the
liquidateBorrow. The control flow eventually reaches
ComptrollerG7::1liquidateBorrowAllowed, which has the following check at the
top:

DeDAUBP DEDAUB.. COM

function liquidateBorrowAllowed(
address cTokenBorrowed,
address cTokenCollateral,
address liquidator,
address borrower,
uint repayAmount) override external returns (uint) {
// Shh - currently unused
liquidator;

// Dedaub: This will always fail when called from the CToken liquidation logic

require(msg.sender == admin, "only dAMM Foundation can liquidate borrowers");

if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {
return uint(Error.MARKET_NOT_LISTED);

However, this check will always fail in the context of a CToken liquidation, as
msg.sender will not be the admin.

The check should instead be moved in CToken: :1iquidateBorrowInternal.

MEDIUM SEVERITY:

ID Description STATUS

Shortfall check in redeemAllowedInternal should be
M1 RESOLVED
removed

In ComptrollerG7: :redeemAllowedInternal, the following check takes place:

function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens)
internal view returns (uint) {
/* Otherwise, perform a hypothetical liquidity check to guard against shortfall */
(Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer,
CToken(cToken), redeemTokens, 9);
if (err != Error.NO_ERROR) {
return uint(err);

// Dedaub: This can be problematic for a borrower
if (shortfall > 0) {

DeDAUBP DEDAUB.. COM

return uint(Error.INSUFFICIENT_LIQUIDITY);

In its essence, this check ensures that the position of the redeemer is not
under-collateralized after the redemption.

While this check makes sense from the point of view of an over-collateralized lending
protocol such as Compound, it can be problematic in the case where a borrower wants
to redeem some of his cTokens as it’s quite likely that the on-chain calculation will
report a non-zero shortfall. It is recommended that this check be removed.

LOW SEVERITY:

ID Description STATUS

Optimization: Iterate over only relevant markets in
getNotionalBorrowsInternal

L1 RESOLVED

In ComptrollexG7::getNotionalBorrowsInternal the code loops over all
supported assets, in order to calculate the value of a users borrowed assets:

function getNotionalBorrowsInternal(address borrower) internal view returns (uint256) {
// Dedaub: Gas-intensive; goes over all supported assets
CToken[] memory cTokens = getAllMarkets();
uint numMarkets = cTokens.length;
uint balance = 9;

for(uint i = @; i < numMarkets; i++) {
CToken cToken = cTokens[i];
balance += oracle.getUnderlyingPrice(cToken) *
cToken.borrowBalanceStored(borrower);

}

return balance;

This is very gas inefficient, as the borrower will only have borrowed a small subset of
the supported tokens in most cases.

DeDAUBP DEDAUB.. COM

It is highly recommended that the code be refactored to use the getAssetsIn method
instead of getAllMarkets(), especially since the protocol aims to support a

significant amount of assets.

L2 | Incorrect governance token address OPEN

In ComptrollerG7::getCompAddress, the governance token address should be returned.
However, being a fork of Compound, the current code erroneously returns the

Compound governance token (COMP) instead of the System9 one.

The code should be updated to return the correct address.

Shortfall logic should be removed from
ComptrollerG7::1liquidateBorrowAllowed

L3 RESOLVED

In ComptrollerG7::liquidateBorrowAllowed, the following check on shortfall

takes place:

function liquidateBorrowAllowed(...){

(Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);
if (err != Error.NO_ERROR) {
return uint(err);

}

// Dedaub: Shortfall checks don't really apply as they do in Compound
if (shortfall == @) {

return uint(Error.INSUFFICIENT_SHORTFALL);
}

The dAMM protocol aims to support on-chain collateral for some of their borrowers.
However, as discussed with the developers, in the case of a default, the shortfall will
occur off-chain. This means that a borrower does not need a shortfall in order to be
liquidated.

DeDAUBP DEDAUB.. COM

OTHER/ ADVISORY ISSUES:

This section details issues that are not thought to directly affect the functionality of the

project, but we recommend addressing them.

ID Description STATUS

Whitelisting an already whitelisted will reset his borrowing
Al OPEN

limit

In ComptrollexrG7::whitelistBorrowerAdd, the relevant storage field whitelisting

storage fields are getting initialized:

borrowerArray[borrower] = true;
borrowLimit[borrower] = 0;

While this is entirely logical when borrower is not already whitelisted, this acts as a
borrow limit reset when borrowerArray[borrower] is already true and has a non-zero
borrow limit. While this is not a bug, it is a weird edge case and it makes sense to add a
check in ComptrollexG7::whitelistBorrowerAdd that guards against the above

scenario.

A2 | Optimization: Guards can be merged RESOLVED

In ComptrollerG7: :setBorrowerLimits, the following guards are in place:

function setBorrowerLimits(address borrower, uint256 _borrowLimit) public override returns
(uint) {
if (msg.sender != admin) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);

}

// Dedaub: This check can be merged with the above guard, to save some gas
// (both in deployment and in runtime)
if (borrowerArray[borrower] != true) {

return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);

}

DeDAUBP DEDAUB.. COM

As the failure handling is identical in both cases, these two guards can be merged, into
a single one where the condition is the two conditions are combined with a logical-or

operator:

function setBorrowerLimits(address borrower, uint256 _borrowLimit) public override returns
(uint) {
if (msg.sender != admin || borrowerAarray[borrower] != true) {
return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);
}

This will help save some gas during normal execution, as well as make deployment
slightly cheaper due to more compact bytecode.

A3 [Compiler known issues INFO

The contracts were compiled with the Solidity compiler v0.8.14 which, at the time of
writing, have some known bugs. We inspected the bugs listed for version 0.8.13 and
concluded that the subject code is unaffected.

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

DeDAUBP DEDAUB.. COM

PROTOCOL CENTRALIZATION ELEMENTS

The protocol has significant centralization elements. More specifically, the whitelisting
of the borrowers and the definition of their borrow limits is entirely determined by the
protocol owners/admins. Both of these elements are entirely reasonable, as the protocol

aims to provide under-collateralized loans to trusted borrowers.

It should also be noted that a lot of the protocol monitoring and the locking of the

collateral is done off-chain, and borrowing terms are enforced via contracts.

DISCLAIMER

The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contracts.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public

bug bounty program.

The resolution of report items is determined by local inspection of changes, not a full
re-audit. Since there was a significant time elapsed between the conclusion of the audit
and the addressing of some issues, the development team is advised to be especially

vigilant with testing the consequences of fixes performed after the initial audit.

ABOUT DEDAUB

Dedaub offers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the

DeDAUBP DEDAUB.. COM

contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

	dAMM Finance Audit
	
	ABSTRACT
	SETTING & CAVEATS
	VULNERABILITIES & FUNCTIONAL ISSUES
	Third party attackers or faulty functionality may block the system or cause the system or users to lose funds. Important system invariants can be violated.
	Examples:​01) User or system funds can be lost when third party systems misbehave.
	02) DoS, under specific conditions.
	03) Part of the functionality becomes unusable due to programming error.
	Examples:​01) Breaking important system invariants, but without apparent consequences.
	02) Buggy functionality for trusted users where a workaround exists.
	03) Security issues which may manifest when the system evolves.
	Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

	CRITICAL SEVERITY
	[No critical severity issues]

	HIGH SEVERITY:
	ID
	H1

	
	

	MEDIUM SEVERITY:
	ID
	M1

	
	LOW SEVERITY:
	ID
	L1
	L2
	L3

	
	

	OTHER/ ADVISORY ISSUES:
	ID
	A1
	A2
	A3

	
	PROTOCOL CENTRALIZATION ELEMENTS
	
	DISCLAIMER
	
	
	
	ABOUT DEDAUB

