
 DEDAUB.COM

dAMM Finance Audit
Smart Contract Security Assessment

Jun 13, 2022

 DEDAUB.COM

ABSTRACT
Dedaub was commissioned to perform a security audit on System9’s dAMM smart
contracts at commit hash 3d59c5c055884122ecc5e7bf6f446205912ba09c. The audit
scope was limited in size and included the following two files:

●​ contracts/ComptrollerG7.sol
●​ contracts/ComptrollerStorage.sol

Two auditors worked on the audit for 3 days. Given that the protocol contracts are a fork
of Compound, the subject of the audit were the introduced changes (delta) in the files
listed above and most of the audit effort was expended on the security of the new
whitelisting feature. As such, this audit was fairly localized and was not concerned about
potential issues in the rest of the protocol.

SETTING & CAVEATS
System9’s dAMM protocol is a lending protocol, which allows borrowers to have
under-collateralized loans. The protocol is a fork of Compound, and builds on top of it by
adding a whitelisting layer to control who and how much one can borrow. Unlike
borrowing, liquidity provision is entirely permissionless, and lending pool participants
enjoy yield rewards.

VULNERABILITIES & FUNCTIONAL ISSUES
This section details issues that affect the functionality of the contract. Dedaub generally
categorizes issues according to the following severities, but may also take other
considerations into account such as impact or difficulty in exploitation:

Category Description

CRITICAL

Can be profitably exploited by any knowledgeable third party
attacker to drain a portion of the system’s or users’ funds OR the
contract does not function as intended and severe loss of funds

 DEDAUB.COM

may result.

HIGH

Third party attackers or faulty functionality may block the system or
cause the system or users to lose funds. Important system invariants
can be violated.

MEDIUM

Examples:​
01) User or system funds can be lost when third party systems
misbehave.
02) DoS, under specific conditions.
03) Part of the functionality becomes unusable due to programming
error.

LOW

Examples:​
01) Breaking important system invariants, but without apparent
consequences.
02) Buggy functionality for trusted users where a workaround exists.
03) Security issues which may manifest when the system evolves.

Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

CRITICAL SEVERITY
[No critical severity issues]

HIGH SEVERITY:
ID Description STATUS

H1
CToken liquidateBorrow will always fail in the context of a
CToken liquidation

RESOLVED

The external entry point for liquidations in either CEther or CErc20 is the
liquidateBorrow. The control flow eventually reaches
ComptrollerG7::liquidateBorrowAllowed, which has the following check at the
top:

 DEDAUB.COM

function liquidateBorrowAllowed(​
 address cTokenBorrowed,​
 address cTokenCollateral,​
 address liquidator,​
 address borrower,​
 uint repayAmount) override external returns (uint) {​
 // Shh - currently unused​
 liquidator; ​
​
 // Dedaub: This will always fail when called from the CToken liquidation logic​
 require(msg.sender == admin, "only dAMM Foundation can liquidate borrowers");​
 if (!markets[cTokenBorrowed].isListed || !markets[cTokenCollateral].isListed) {​
 return uint(Error.MARKET_NOT_LISTED);​
 }​
 ...​
}

However, this check will always fail in the context of a CToken liquidation, as
msg.sender will not be the admin.

The check should instead be moved in CToken::liquidateBorrowInternal.

MEDIUM SEVERITY:
ID Description STATUS

M1
Shortfall check in redeemAllowedInternal should be
removed

RESOLVED

In ComptrollerG7::redeemAllowedInternal, the following check takes place:

function redeemAllowedInternal(address cToken, address redeemer, uint redeemTokens)

internal view returns (uint) {​ ​
 /* Otherwise, perform a hypothetical liquidity check to guard against shortfall */​
 (Error err, , uint shortfall) = getHypotheticalAccountLiquidityInternal(redeemer,

CToken(cToken), redeemTokens, 0);​
 if (err != Error.NO_ERROR) {​
 return uint(err);​
 }

 // Dedaub: This can be problematic for a borrower​
 if (shortfall > 0) {​

 DEDAUB.COM

 return uint(Error.INSUFFICIENT_LIQUIDITY);​
 }​
 ...​
}

In its essence, this check ensures that the position of the redeemer is not
under-collateralized after the redemption.

While this check makes sense from the point of view of an over-collateralized lending
protocol such as Compound, it can be problematic in the case where a borrower wants
to redeem some of his cTokens as it’s quite likely that the on-chain calculation will
report a non-zero shortfall. It is recommended that this check be removed.

LOW SEVERITY:
ID Description STATUS

L1
Optimization: Iterate over only relevant markets in
getNotionalBorrowsInternal

RESOLVED

In ComptrollerG7::getNotionalBorrowsInternal the code loops over all
supported assets, in order to calculate the value of a users borrowed assets:

function getNotionalBorrowsInternal(address borrower) internal view returns (uint256) {​
 // Dedaub: Gas-intensive; goes over all supported assets​
 CToken[] memory cTokens = getAllMarkets();​
 uint numMarkets = cTokens.length;​
 uint balance = 0;​
​
 for(uint i = 0; i < numMarkets; i++) {​
 CToken cToken = cTokens[i];​
 balance += oracle.getUnderlyingPrice(cToken) *

 cToken.borrowBalanceStored(borrower);​
 }​
 return balance;​
}

This is very gas inefficient, as the borrower will only have borrowed a small subset of
the supported tokens in most cases.

 DEDAUB.COM

It is highly recommended that the code be refactored to use the getAssetsIn method
instead of getAllMarkets(), especially since the protocol aims to support a
significant amount of assets.

L2 Incorrect governance token address OPEN

In ComptrollerG7::getCompAddress, the governance token address should be returned.
However, being a fork of Compound, the current code erroneously returns the
Compound governance token (COMP) instead of the System9 one.

The code should be updated to return the correct address.

L3
Shortfall logic should be removed from
ComptrollerG7::liquidateBorrowAllowed

RESOLVED

In ComptrollerG7::liquidateBorrowAllowed, the following check on shortfall
takes place:

function liquidateBorrowAllowed(...){​
 ... ​
 (Error err, , uint shortfall) = getAccountLiquidityInternal(borrower);​
 if (err != Error.NO_ERROR) {​
 return uint(err);​
 }​
​
 // Dedaub: Shortfall checks don't really apply as they do in Compound​
 if (shortfall == 0) {​
 return uint(Error.INSUFFICIENT_SHORTFALL);​
 }​
 ...​
}

The dAMM protocol aims to support on-chain collateral for some of their borrowers.
However, as discussed with the developers, in the case of a default, the shortfall will
occur off-chain. This means that a borrower does not need a shortfall in order to be
liquidated.

 DEDAUB.COM

OTHER/ ADVISORY ISSUES:
This section details issues that are not thought to directly affect the functionality of the
project, but we recommend addressing them.

ID Description STATUS

A1
Whitelisting an already whitelisted will reset his borrowing
limit

OPEN

In ComptrollerG7::whitelistBorrowerAdd, the relevant storage field whitelisting
storage fields are getting initialized:

borrowerArray[borrower] = true;​
borrowLimit[borrower] = 0;

While this is entirely logical when borrower is not already whitelisted, this acts as a
borrow limit reset when borrowerArray[borrower] is already true and has a non-zero
borrow limit. While this is not a bug, it is a weird edge case and it makes sense to add a
check in ComptrollerG7::whitelistBorrowerAdd that guards against the above
scenario.

A2 Optimization: Guards can be merged RESOLVED

In ComptrollerG7::setBorrowerLimits, the following guards are in place:

function setBorrowerLimits(address borrower, uint256 _borrowLimit) public override returns

(uint) {​
 if (msg.sender != admin) {​
 return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);​
 }​
​
 // Dedaub: This check can be merged with the above guard, to save some gas​
 // ​ (both in deployment and in runtime)​
 if (borrowerArray[borrower] != true) {​
 return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);​
 }​
 ...​
}

 DEDAUB.COM

As the failure handling is identical in both cases, these two guards can be merged, into
a single one where the condition is the two conditions are combined with a logical-or
operator:

function setBorrowerLimits(address borrower, uint256 _borrowLimit) public override returns

(uint) {​
 if (msg.sender != admin || borrowerAarray[borrower] != true) {​
 return fail(Error.UNAUTHORIZED, FailureInfo.SET_BORROWER_LIMIT_CHECK);​
 }​
 ...​
}

This will help save some gas during normal execution, as well as make deployment
slightly cheaper due to more compact bytecode.

A3 Compiler known issues INFO

The contracts were compiled with the Solidity compiler v0.8.14 which, at the time of
writing, have some known bugs. We inspected the bugs listed for version 0.8.13 and
concluded that the subject code is unaffected.

https://github.com/ethereum/solidity/blob/develop/docs/bugs_by_version.json

 DEDAUB.COM

PROTOCOL CENTRALIZATION ELEMENTS
The protocol has significant centralization elements. More specifically, the whitelisting
of the borrowers and the definition of their borrow limits is entirely determined by the
protocol owners/admins. Both of these elements are entirely reasonable, as the protocol
aims to provide under-collateralized loans to trusted borrowers.

It should also be noted that a lot of the protocol monitoring and the locking of the
collateral is done off-chain, and borrowing terms are enforced via contracts.

DISCLAIMER
The audited contracts have been analyzed using automated techniques and extensive
human inspection in accordance with state-of-the-art practices as of the date of this
report. The audit makes no statements or warranties on the security of the code. On its
own, it cannot be considered a sufficient assessment of the correctness of the contracts.
While we have conducted an analysis to the best of our ability, it is our recommendation
for high-value contracts to commission several independent audits, as well as a public
bug bounty program.

The resolution of report items is determined by local inspection of changes, not a full
re-audit. Since there was a significant time elapsed between the conclusion of the audit
and the addressing of some issues, the development team is advised to be especially
vigilant with testing the consequences of fixes performed after the initial audit.

ABOUT DEDAUB
Dedaub offers technology and auditing services for smart contract security. The
founders, Neville Grech and Yannis Smaragdakis, are top researchers in program
analysis. Dedaub’s smart contract technology is demonstrated in the

 DEDAUB.COM

contract-library.com service, which decompiles and performs security analyses on the
full Ethereum blockchain.

	dAMM Finance Audit
	
	ABSTRACT
	SETTING & CAVEATS
	VULNERABILITIES & FUNCTIONAL ISSUES
	Third party attackers or faulty functionality may block the system or cause the system or users to lose funds. Important system invariants can be violated.
	Examples:​01) User or system funds can be lost when third party systems misbehave.
	02) DoS, under specific conditions.
	03) Part of the functionality becomes unusable due to programming error.
	Examples:​01) Breaking important system invariants, but without apparent consequences.
	02) Buggy functionality for trusted users where a workaround exists.
	03) Security issues which may manifest when the system evolves.
	Issue resolution includes “dismissed”, by the client, or “resolved”, per the auditors.

	CRITICAL SEVERITY
	[No critical severity issues]

	HIGH SEVERITY:
	ID
	H1

	
	

	MEDIUM SEVERITY:
	ID
	M1

	
	LOW SEVERITY:
	ID
	L1
	L2
	L3

	
	

	OTHER/ ADVISORY ISSUES:
	ID
	A1
	A2
	A3

	
	PROTOCOL CENTRALIZATION ELEMENTS
	
	DISCLAIMER
	
	
	
	ABOUT DEDAUB

