
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\15295 Fall 2017 #3 -- 
Problem Discussion 
September 13, 2017 
​  
This is where we collectively describe algorithms for these problems.  To see the problem 
statements follow this link.  To see the scoreboard, go to this page and select this contest. 
 
A. Numbers Painting 
 
Consider the following greedy algorithm.  Color the numbers in increasing order.  For each 
number x, compute all of its divisors, and give x the minimum positive color that is not used 
among its divisors. 
 
Theorem: For any N, the greedy algorithm colors [1 … N] with⎣log N⎦+1 colors, which is 
optimum. 
 
Proof: Let c =⎣log N⎦, and let n = 2c ≤ N.  Note that 1, 2, 4, … 2c forms  a clique of size c+1 
in the divisor graph, and therefore requires at least c+1 colors.  Let d be the color used by 
the greedy algorithm for N.  Since the greedy algorithm chose d, there must be a divisor of 
N, call it N’, such that N’ is colored with color d-1.  Because N’ divides N, it must be the case 
that N’ ≤ N/2.  Furthermore there must be a divisor of N’ (call it N’’) that is colored with color 
d-2. Etc.  At most c repetitions of this process gives us 1, which has color 1.  Therefore d ≤ 
c+1.  Q.E.D. 
 
The trial division algorithm tries all potential divisors in {2, 3, … ⎣√x⎦}.  If d is a divisor of x, 
then the algorithm outputs d and x/d as divisors of x.  This algorithm finds all divisors of x 
and runs in time O(√x).  This is fast enough since  N ≤ 10000. 
 
[[ If you’re following this class you’ve seen the trick for generating all the divisors of 1, 2, … n 
in time O(n log n).  For each i in [1, 2, 3, … n/2] we compute 2i, 3i, 4i, … and add i as a 
divisor for each of these numbers.  It’s easy to see that the total work is O(n log n).   ]] 
 
--DS 
 
B. Join the Strings 
 
The natural solution is to simply sort the strings in lexicographical order, and then 
concatenate them. However this is insufficient. The problem is with prefixes; we cannot just 
sort them in increasing length. A counterexample is {“bc”, “bca”}: swapping the order is then 
better (“bcabc” < “bcbca”). 
 
Trying a few examples, we see that an intuitive solution is to sort with the comparison 
function (a < b ⇔ a^b < b^a), where ^ is concatenation. It is not clear that this is even a valid 
total ordering. In fact it is, and this has a cute proof (found online by Tom). 
 
Treat each string as a base-26 integer. Then 

 

https://contest.cs.cmu.edu/295/s17/170913-problems.pdf
http://codeforces.com/group/KIrM1Owd8u/contests


a^b < b^a ⇔ a * 26^|b| + b < b * 26^|a| + a ⇔ a(26^|b| - 1) < b(26^|a| - 1) 
⇔ a / (26^|a| - 1) < b / (26^|b| - 1) 
So if we encode a string x as a real number (x / (26^|x| - 1)), we are simply sorting some real 
numbers. So transitivity holds and < is a valid total ordering. Hence it is well-defined to sort 
by <. 
 
Sorting by this comparison function gives us s_1 <= s_2 <= … <= s_N. We claim 
concatenation in this order is optimal. Indeed suppose there were an optimal solution with 
s_1 in some other position, with string s_i right before s_1. Then since s_1^s_i <= s_i^s_1, 
we can swap s_1 with s_i and the new solution will be equally optimal. Continuing in this 
way, we can bubble s_1 to the front and retain optimality. But now by induction s_2 <= … <= 
s_N is the optimal ordering for the remaining strings. Hence this order of concatenation is 
optimal. --Raymond 
 
C. Remote Control 
 
D. Just Matrix 
 
So, we have an unknown matrix of numbers.  Let’s start by giving a variable for each 
element we need to fill in.  So for example in the 3x3 case we’d have 9 variables, arranged 
as follows. 

x00 x01 x02 

x10 x11 x12 

x20 x21 x22 

 
The two ordering constraints, left and top give an ordering constraint among the variables on 
each row and each column.  To be specific, suppose that the top row of the left matrix is 0 0 
2.  The second number indicates that x01 is less than 0 of x00.  In other words it’s greater 
than x00.  So we have x00 < x01.  The third digit, 2, means that x02 is less than both x00 
and x01.  But since x00 is the smallest of these we can just write this as x02 < x00. 
Summarizing we have: 
 

  x02 < x00 < x01 
 
So for each row and each column there is a sequence of n-1 inequalities like these among 
the variables of that row or column.  (We’ll come back to how to generate the necessary 
ordering later.)  Our goal is to assign each variable with a unique number in {1,2,3, … ,n2} 
that satisfies all these constraints. 
 
Here’s how to do this.  Construct a directed graph, where each vertex is one of the variables. 
Put a directed edge from V ➡ W if the inequality V < W occurs.  Now use depth first search 
to compute a topological ordering on these vertices.  (If the graph has a cycle, then there is 
no solution.)  Now assign the variables 1, 2, 3, … in the topological order.  This assignment 
will satisfy all the constraints. 

 



 
It only remains to compute the necessary ordering for each row and each column.  Since a 
row is up to 600 in length it will be too slow to use an O(n2) algorithm.  There are several 
ways to do this in O(n log n).  You can use splay trees (or any other BST), or you can use 
SegTrees.  I’ll describe the SegTree method that I came up with.  Raymond has a different 
way. 
 
First I’ll show how to construct a permutation of the numbers 0, 1, … n-1 that satisfies the 
constraints of a row.   As a working example, say the constraint row is 0 0 2 (as above). 
The 2 means that the number in that position (the last position) has two numbers greater 
than it to its left.  This is equivalent to saying that it has 0 numbers less than it to its left.  If 
the sequence is c0, c1, c2, then we replace it by (0-c0, 1-c1, 2-c2).  In our working example 
this is 0 1 0.   
 
The algorithm works from right to left.  Initially we have a set {0,1,2} and we are working on 0 
(the third element of the sequence 0 1 0).  We know that among the current choices {0,1,2} 
the only number that is greater than 0 of them is 0.  So we output the 0.  Now our set is {1,2} 
and we’re seeking a number that is greater than 1 of them, namely 2.  So we output the 2.  
Now we’re left with the set {1}, and the last output is 1.  This generates the permutation 1, 2, 
0.  And this satisfies its requirements. 
 
To implement this process efficiently we maintain a SegTree to store a sequence of bits  b0, 
b1, … b(n-1).  All the bits are initially 1, which represents the set {0,1,...,n-1}.  We’re going to 
need to support the following operations: 
 
Assign(i,x) : Execute the assignment bi ⇠ x (where x is 0 or 1) 
Find_rank(r): return the index i such that bi=1 and there are r ones among {b0, b1, … b(i-1)} 
 
SegTrees support this very easily.  Each internal node stores the number of 1 bits in the 
subtree rooted there.  Assign() is just standard, and Find_rank is a simple walk down the 
segtree to find the desired index. 
 
With this in hand we can now find the desired permutation by repeatedly finding the index 
using find_rank() outputting that index, and then setting that bit to 0 via Assign(). 
 
Now to convert the permutation perm = [1,2,0] into the desired index list ilist do the following: 
 
   Ilist[perm[0]] ⇠0 
   Ilist[perm[1]] ⇠1 
   Ilist[perm[2]] ⇠2 
 
Which results in ilist = [2, 0, 1].  Thus we have generated our sequence x02 < x00 < x01. 
(note the subscripts) 
 
--DS 
 

 

http://www.cs.cmu.edu/afs/cs/academic/class/15451-f17/www/lectures/lec05-powerful-arrays.pdf


E. XOR-omania 
Take the sequence of As and xor each Ai by y. Notice that this does not change the Bs at all 
because Bij = Ai xor y xor Aj xor y = Ai xor Aj. Using this fact, we assume WLOG that A0 = 0. 
Then, all we need to do is figure out which Bs are A0 xor Ai. 
 
Next, note that if x = Ai xor Aj and y = Ai xor Ak then x xor y = Aj xor Ak so x xor y is a B value. 
In this way we can discover all Bs that are either A0 xor Ai or A1 xor Ai for any i. 
 
The final step is to determine whether each B is is A0 or A1. WLOG we can choose the first 
other selected to be B1 = A0 xor A2. Then, if we xor against any other Bk that is A0 xor Ai, we 
will find that B0 xor Bk \in Bs and B1 xor Bk \in Bs. However, this also includes A1 xor A2. We 
can exclude A1 xor A2 by excluding B1 xor B0. 
 
This gives us the list of A0 xor Ai for all i. Since A0 = 0, we simply add 0 to the list to recover 
all of the Ai. 
 
-- Corwin 
 
F. Wolves and Sheep 
 

 


