
GT CS 6035: Introduction to Information Security 

Project  
Machine Learning on CLAMP 

Learning Goals of this Project: 
 

Students will learn introductory level concepts about Data Science and Machine Learning as it 
can be applied to the Cybersecurity Domain. This lab develops understanding of the general 
data science process and commonly used python libraries like pandas and sci-kit learn.  
 

The final deliverables: 
Complete the Canvas Quiz. 
Submit the 5 python files to Gradescope. The files should be named task1.py, task2.py, 
task3.py, task4.py and task5.py and should implement the functions described below (and in 
the starter code). 
 

Important Reference Material : 
●​ API Reference — scikit-learn 1.1.2 documentation 
●​ https://www.kdnuggets.com/2016/03/data-science-process.html  
●​ Getting started — pandas 1.4.3 documentation (pydata.org) 
●​ Python Cheat Sheet for Data Science (elitedatascience.com) 

 

Submission: 
Gradescope (autograded)  
Canvas Quiz 
 

Introduction 
You may be asking yourself “what is the importance of learning about Data Science and 

Machine Learning in a cybersecurity class?”, The short answer is that data science is a useful 
set of tools to handle the massive amount of data that flow through IT systems and it is used by 
many security teams either explicitly or within tools/programs they use so it is important to get a 
basic understanding of how it works. This Project will go through a simplified scenario where 
data science can be used, if this sparks your interest there are plenty of other ML focused 
classes at GaTech that you may be interested in taking, as well as a wealth of training materials 
on Youtube, Coursera, Udacity, Udemy, DataCamp etc that you could use to go deeper into the 
field. 
 
 
 
 

https://scikit-learn.org/stable/modules/classes.html
https://www.kdnuggets.com/2016/03/data-science-process.html
https://pandas.pydata.org/docs/getting_started/index.html#getting-started
https://elitedatascience.com/python-cheat-sheet
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Scenario: 
You are an analyst on a security team for a midsized software company that runs a 

messaging app (a slack, gchat, microsoft teams competitor). It is Monday morning and you see 
an email from your manager setting up a meeting to discuss a new security feature that needs 
to be implemented in the product ASAP. You join the meeting and learn that recently there has 
been a big uptick in malicious executable files being sent over the chat app and it is starting to 
generate bad press for the company. A few analysts on the team already worked on analyzing a 
set of files sent over the app and classifying them as malicious or benign. They also used a 
python library (pefile) to get some attributes of each executable file and have created a CSV 
with those extracted attributes and a column with the name class with a 1 denoting a malicious 
file and a 0 denoting a benign files. They documented their preprocessing work in a readme in 
the git repo (urwithajit9/ClaMP: A Malware classifier dataset built with header fields’ values of 
Portable Executable files (github.com)) and shared the repo with software engineers so they 
can get to work writing code that will generate those features for every executable file sent over 
the messaging app. Your boss turns to you and says I would like you to help us to understand a 
bit more about how big of a problem this is on our app and write a model that takes in these 
features and produces a propensity score from 0 to 1 where scores closer to 0 mean a low 
likelihood of the file being malicious and closer to a 1 means a higher likelihood of a file being 
malicious. Also since the team may want to reuse this type of work in the future for different 
types of files or with different extracted attributes you should create functions that can be used 
in the future with minimal rework. Once you produce a model, you will share your code and the 
trained model file with the software engineers who will integrate the model into the messaging 
app and will score all files uploaded to the app. 

 
 
 

General Advice 
●​ Develop locally then test in the autograder when you are confident your code runs 

without errors. You can run the python files locally, develop in a local vscode/jupyter 
notebook or on a hosted web notebook like google colab. 

●​ Do not use print statements in your gradescope submissions. While print statements are 
useful to debug issues locally in an autograder context they can leak sensitive answer 
information. We have detections in gradescope that will block you from viewing 
scores/outputs from your code if you use print statements in any of your submitted code. 
If you try to bruteforce/hack/game the autograder or extract information we will give you 
a 0 for the whole assignment.  

●​ Read the python library documentation. You will be using pandas, scikit-learn, 
yellowbrick  

●​ Do not hard code solutions (see screenshot below for what not to do): 

https://github.com/urwithajit9/ClaMP
https://github.com/urwithajit9/ClaMP
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Task 0 (20 points) 
​ We have a Canvas quiz that is meant to test that you have read the library 
documentation for the packages we use for this class. It is not meant to be tricky and can be 
completed before you start the project or after you finish it.  
 
Useful Links: 

●​ scikit-learn Documentation 
 
Deliverables: 

●​ Complete Canvas Quiz 
 

Task 1 (5 points) 
Lets first get familiar with some pandas basics. Pandas is a library that handles data 

frames which you can think of as a python class that handles tabular data. In this section you 
will make a very simple function that takes in a pandas dataframe of the file attributes and 
classifications and returns some simple attributes. See the function skeleton and implement a 
count of rows, count of columns, count of rows where the classification is 1 (positive), count of 
rows where the classification is 0 (negative) and a percentage of classification of 1 (percent 
positive) in the dataset’s target column. Generally in the real world you would also use plotting 
tools like PowerBi, Tableau, Data Studio, Matplotlib etc to create graphics and other visuals to 
better understand the dataset you are working with, this step is generally known as Exploratory 
Data Analysis. Since we are using an autograder for this class we will skip the plotting for this 
project. For this task we have released a test suite on ed discussion if you are struggling to run 
things locally please set that up and use it to debug your function. 

 

https://scikit-learn.org/stable/
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Useful Links: 
●​ pandas documentation — pandas 1.5.3 documentation (pydata.org) 
●​ What is Exploratory Data Analysis? | IBM 
●​ Top Data Visualization Tools | KDnuggets  
●​ CS 6035 O01, OCY – Ed Discussion (edstem.org) 

 
Deliverables: 

●​ Complete find_dataset_statistics function in task1.py 
●​ Submit task1.py to gradescope 

 
 

Task 2 (10 points) 
Now that you have a basic understanding of pandas and the dataset it is time to dive into 

some more complex data processing tasks. The first subtask in this task is splitting your dataset 
into both features and targets (columns) and splitting your dataset into training and test sets 
(rows). These are basic concepts in model building but at a high level it is important to hold out 
a subset of your data when you train a model so you can see what the expected performance is 
on unseen samples and so you can determine if the resulting model is overfit (performs much 
better on training data vs test data). Preprocessing data is important since most models only 
take in numerical values so categorical features need to be “encoded” to numerical values so 
models can use them. Numerical scaling can be more or less useful depending on the type of 
model used but is especially important in linear models. These preprocessing techniques will 
provide you options to augment your dataset and improve model performance.  

For one hot encoding and scaling functions you should return a dataframe with the 
encoded/scaled columns concatenated to the ‘other’ columns you did not transform. For the 
PCA functions you should return just the PCA dataframe. For the feature engineering dataframe 
you should return the feature engineered column attached to the input dataframe. 

Example Output for one hot encoding (where color and version are encoded):​

 
Note: For these functions (and in data science/ML in general) you should be 

training/fitting to the train set and predicting/transforming on the train and test sets.  
Note: for onehot encoding please use the format columnName_columnValue for the new 

encoded column names. Ie in the sklearn example of a column named `gender` and values 
`male` and `female`, you would put `gender_male` and `gender_female` as your new column 
names after one hot encoding. If the test set has a third gender then you would denote that 
value you didn’t see at training time with 0’s for each encoded column.  

https://pandas.pydata.org/docs/
https://www.ibm.com/topics/exploratory-data-analysis
https://www.kdnuggets.com/2020/05/top-10-data-visualization-tools-every-data-scientist.html
https://edstem.org/us/courses/30812/discussion/2695155
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Note: When using sklearn.preprocessing.OneHotEncoder check the output from the 
transformation it may cause issues if it is not a format that pandas dataframes expect. To see 
this and to debug it, try running your code locally (or on a google colab notebook) using the 
training csv with a few categorical columns. 

Note: for PCA you should drop columns with na values before running fitting or 
transforming methods (in the real world you could also try to fill those missing values but for this 
project that is out of our scope) 

Note: if you see the error `Test Failed: Found unknown categories` for one hot encoding 
make sure you check the initialization of the OneHotEncoder and make sure you are handling 
values in the test set that were not in the training set (we want to set those unseen values 
encoded as all 0s for that encoded column as we describe in the 2nd Note above) 

Note: For this task we have released a test suite on ed discussion if you are struggling to 
run things locally please set that up and use it to debug your function. 
 
Useful Links: 

●​ Training and Test Sets  |  Machine Learning  |  Google Developers 
●​ Bias–variance tradeoff - Wikipedia 
●​ https://en.wikipedia.org/wiki/Overfitting  
●​ Categorical and Numerical Types of Data | 365 Data Science 
●​ scikit-learn: machine learning in Python — scikit-learn 1.2.1 documentation 
●​ CS 6035 O01, OCY – Ed Discussion (edstem.org) 

 
Deliverables: 

●​ Make use of the scikit-learn (sklearn) python package in your function implementations 
●​ Complete train_test_split function  

○​ Using the train_test_split function from sklearn implement a function that given a 
dataset, target column, test size, random state and True/False Value for stratify 
will return train_features (DataFrame), test_features (DataFrame), train_targets 
(Series) and test_targets (Series)  

○​ Hint: write your code in a way that handles a case where we want to stratify vs 
where we don’t want to stratify (dont use stratify directly as an input to the 
sklearn function) 

●​ Complete PreprocessDataset class in task2.py 
○​ one_hot_encode_columns_train 

■​ Given training features (DataFrame), one_hot_encode_cols (list of 
column names) and using sklearn’s OneHotEncoder. Split the data into 
columns that should be encoded and those that should be passed 
through then fit the encoder, transform the training data. You will keep the 
column names the same as their input column names.(NOTE: make sure 
this new df uses the row indexes corresponding to the input dataframe). 
Finally join the encoded columns with the columns from above that should 
be passed through. Your final results should be a Dataframe with columns 
in the one_hot_encode_cols list encoded and all other columns 
untouched. 

https://developers.google.com/machine-learning/crash-course/training-and-test-sets/video-lecture
https://en.wikipedia.org/wiki/Bias%E2%80%93variance_tradeoff
https://en.wikipedia.org/wiki/Overfitting
https://365datascience.com/tutorials/statistics-tutorials/numerical-categorical-data/
https://scikit-learn.org/stable/index.html
https://edstem.org/us/courses/30812/discussion/2695155
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○​ one_hot_encode_columns_test 
■​ Given training features (DataFrame), one_hot_encode_cols (list of 

column names) and using sklearn’s OneHotEncoder, split the data into 
columns that should be encoded and those that should be passed 
through then using the encoder fit on the training data, transform the test 
data. You will keep the column names the same as their input column 
names.  (NOTE: make sure this new df uses the row indexes 
corresponding to the input dataframe). Finally join the encoded columns 
with the columns from above that should be passed through. Your final 
results should be a Dataframe with columns in the one_hot_encode_cols 
list encoded and all other columns untouched. 

○​ min_max_scaled_columns_train 
■​ Given training features (DataFrame), min_max_scale_cols (list of column 

names) and using sklearn’s MinMaxScaler, Split the data into columns 
that should be scaled and those that should be passed through then fit 
the scaler, transform the training data and create a dataframe with column 
names the same as the pre-scaled feature.(NOTE: make sure this new df 
uses the row indexes corresponding to the input dataframe) Finally join 
the scaled columns with the columns from above that should be passed 
through. Your final results should be a Dataframe with columns in the 
min_max_scale_cols list scaled and all other columns untouched. 

○​ min_max_scaled_columns_test 
■​ Given training features (DataFrame), min_max_scale_cols (list of column 

names) and using sklearn’s MinMaxScaler, split the data into columns 
that should be scaled and those that should be passed through then using 
the scaler fit on the training data, transform the test data and create a 
dataframe with column names  the same as the pre-scaled feature. 
(NOTE: make sure this new df uses the row indexes corresponding to the 
input dataframe) Finally join the scaled columns with the columns from 
above that should be passed through. Your final results should be a 
Dataframe with columns in the min_max_scale_cols list scaled and all 
other columns untouched. 

○​ pca_train 
■​ Given training features (DataFrame), n_components (int) and using 

sklearn’s PCA, initialize PCA with a random seed of 0 and n_components, 
train PCA on the training features dropping any columns that have NA 
values then transform the training set using PCA and create a DataFrame 
with column names component_1, component_2 .. component_n for each 
component you created (NOTE: this new df (for the autograder this 
semester) should have an index from 0 to n which will not match the the 
row indexes corresponding to the input dataframe) 

○​ pca_test 
■​ Given test features (DataFrame), n_components (int) and using sklearn’s 

PCA, using the above trained PCA and dropping any columns that have 
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NA values then transform the test set using PCA and create a DataFrame 
with column names component_1, component_2 .. component_n for each 
component you created  (NOTE: this new df (for the autograder this 
semester) should have an index from 0 to n which will not match the the 
row indexes corresponding to the input dataframe) 

○​ feature_engineering_train 
■​ Given training features (DataFrame) and a with the feature engineering 

functions passed in a dict with the format  {'feature_name':function,} for 
each ‘feature_name’ in the dict, create columns of name in the training 
DataFrame by passing the training feature dataframe to the associated 
function. The Returned Dataframe will consist of the input dataframe with 
the additional feature engineered columns from the dict (NOTE: make 
sure this new df uses the row indexes corresponding to the input 
dataframe) 

○​ feature_engineering_test 
■​ Given test features (DataFrame) and a with the feature engineering 

functions passed in a dict with the format  {'feature_name':function,} for 
each ‘feature_name’ in the dict, create columns of name in the test 
DataFrame by passing the test feature dataframe to the associated 
function. The Returned Dataframe will consist of the input dataframe with 
the additional feature engineered columns from the dict (NOTE: make 
sure this new df uses the row indexes corresponding to the input 
dataframe) 

○​ preprocess 
■​ Given a Training Features (DataFrame), Test Features (DataFrame) and 

the functions you created above, return Training and Test Dataframes  
with the one_hot_encode_cols encoded, min_max_scale_cols scaled, 
features described in the feature_engineering_functions engineered and 
any columns not affected by the above functions passed through to the 
output the same as they were in the input. (NOTE: make sure this new df 
uses the row indexes corresponding to the input dataframe) 

●​ Submit task2.py to Gradescope 
 

Task 3 (15 points) 
​ So far we have functions to split the data and preprocessed it. Now we will run a basic 
model on the data to cluster files (rows) with similar attributes together. We will use an 
unsupervised (model with no target column) model, Kmeans, since it is simple to use and 
understand. Please use scikit-learn to create the model and Yellowbrick to determine the 
optimal value of k for our dataset. 
 
Useful Links: 

●​ Unsupervised learning - Wikipedia 

https://en.wikipedia.org/wiki/Unsupervised_learning
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●​ What is Clustering?  |  Machine Learning  |  Google Developers 
●​ ML | K-means++ Algorithm - GeeksforGeeks 
●​ scikit-learn: machine learning in Python — scikit-learn 1.2.1 documentation 
●​ Yellowbrick: Machine Learning Visualization — Yellowbrick v1.5 documentation 

(scikit-yb.org) 
Deliverables: 

●​ Make use of the scikit-learn (sklearn) and yellowbrick python packages in your function 
implementations 

●​ Complete the KmeansClustering class in task3.py 
○​ kmeans_train 

■​ Initialize a sklearn Kmeans model using random_state, n_init =10. 
Initialize a yellowbrick KElbowVisualizer to search for the optimal value of 
k (between 1 and 10). Train the KElbowVisualizer on the training data and 
determine the optimal k value. Then Train a Kmeans model with the 
proper initialization for that optimal value of k and return the cluster ids for 
each row of the training set as a list. 

○​ kmeans_test 
■​ Using the model you trained in the previous function return the cluster ids 

for each row of the test set as a list. 
○​ train_add_kmeans_cluster_id_feature 

■​ Using kmeans_train add an additional column to the training features and 
return the training dataframe with all input features untouched and the 
additional cluster id column with the column name “kmeans_cluster_id” 

○​ test_add_kmeans_cluster_id_feature 
■​ Using kmeans_test add an additional column to the test features and 

return the test dataframe with all input features untouched and the 
additional cluster id column with the column name “kmeans_cluster_id” 

●​ Submit task3.py to Gradescope 
 

Task 4 (25 points) 
​ Finally we are ready to try a few different supervised classification models. We have 
chosen a few commonly used models for you to use here but there are many options and in the 
real world specific algorithms may fit a specific dataset better. You also won’t be doing any 
hyperparameter tuning yet to better focus on writing the code. You will train a model using the 
training set, predict on the training/test sets and calculate performance metrics and return a 
ModelMetrics object and trained scikit-learn model from each model function. (Note: You should 
use RFE for determining feature importance of the logistic regression model but do NOT use 
RFE for random forest or gradient boosting models to determine feature importance please 
use their built in values for this) 
 
Useful Links: 

●​ Supervised Learning  |  Machine Learning  |  Google Developers 

https://developers.google.com/machine-learning/clustering/overview
https://www.geeksforgeeks.org/ml-k-means-algorithm/
https://scikit-learn.org/stable/index.html
https://www.scikit-yb.org/en/latest/
https://www.scikit-yb.org/en/latest/
https://developers.google.com/machine-learning/intro-to-ml/supervised
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●​ scikit-learn: machine learning in Python — scikit-learn 1.2.1 documentation 
●​ Classification  |  Machine Learning  |  Google Developers 
●​ Classification: True vs. False and Positive vs. Negative  |  Machine Learning  |  Google 

Developers 
●​ Classification: Accuracy  |  Machine Learning  |  Google Developers 
●​ Classification: Precision and Recall  |  Machine Learning  |  Google Developers 
●​ Classification: ROC Curve and AUC  |  Machine Learning  |  Google Developers 

 
Deliverables: 

●​ Make use of the scikit-learn (sklearn) python package in your function implementations 
●​ Complete the Following Functions in task4.py: 

○​ calculate_naive_metrics 
■​ Given a train dataframe, test dataframe, target_col and naive assumption 

split out the target column from the training and test dataframes to create 
a feature dataframes and a target series then calculate (rounded to 4 
decimal places) accuracy, recall, precision and f1 score using the sklearn 
functions, the train and test target values and the naive assumption. 

○​ calculate_logistic_regression_metrics 
■​ Given a train dataframe, test dataframe, target_col and logreg_kwargs 

split out the target column from the training and test dataframes to create 
a feature dataframes and a target series. Then train a logistic regression 
model (initialized using the kwargs) on the training data and predict (both 
binary predictions and probability estimates) on the training and test data. 
Then using those predictions and estimates along with the target values 
calculate (rounded to 4 decimal places) accuracy, recall, precision, f1 
score, false positive rate, false negative rate and area under the reciever 
operator curve (using probabilities for roc auc) for both training and test 
datasets.  

■​ For Feature Importance use the top 10 features selected by RFE and sort 
by absolute value of the coefficient from biggest to smallest (make sure 
you use the same feature and importance column names as 
ModelMetrics shows in feat_name_col and imp_col and the index is 0-9 
you can do that with `df.reset_index(drop=True)` )  

○​ calculate_random_forest_metrics  
■​ Given a train dataframe, test dataframe, target_col and rf_kwargs split out 

the target column from the training and test dataframes to create a feature 
dataframes and a target series. Then train a random forest model 
(initialized using the kwargs) on the training data and predict (both binary 
predictions and probability estimates) on the training and test data. Then 
using those predictions and estimates along with the target values 
calculate (rounded to 4 decimal places) accuracy, recall, precision, f1 
score, false positive rate, false negative rate and area under the reciever 
operator curve  (using probabilities for roc auc)  for both training and test 
datasets 

https://scikit-learn.org/stable/index.html
https://developers.google.com/machine-learning/crash-course/classification/video-lecture
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/true-false-positive-negative
https://developers.google.com/machine-learning/crash-course/classification/accuracy
https://developers.google.com/machine-learning/crash-course/classification/precision-and-recall
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
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■​ For Feature Importance use the top 10 features using the built in feature 
importance attributes as sorted from biggest to smallest (make sure you 
use the same feature and importance column names as ModelMetrics 
shows in feat_name_col and imp_col and the index is 0-9 you can do that 
with `df.reset_index(drop=True)` )  

○​ calculate_gradient_boosting_metrics  
■​  Given a train dataframe, test dataframe, target_col and gb_kwargs split 

out the target column from the training and test dataframes to create a 
feature dataframes and a target series. Then train a gradient boosting 
model (initialized using the kwargs) on the training data and predict (both 
binary predictions and probability estimates) on the training and test data. 
Then using those predictions and estimates along with the target values 
calculate (rounded to 4 decimal places) accuracy, recall, precision, f1 
score, false positive rate, false negative rate and area under the reciever 
operator curve (using probabilities for roc auc)  for both training and test 
datasets 

■​ For Feature Importance use the top 10 features using the built in feature 
importance attributes as sorted from biggest to smallest (make sure you 
use the same feature and importance column names as ModelMetrics 
shows in feat_name_col and imp_col and the index is 0-9 you can do that 
with `df.reset_index(drop=True)` )  

●​ Submit task4.py to Gradescope 
 
 

Task 5 (25 points) 
​ Now that you have written functions for different steps of the model building process you 
will put it all together. You will write code that trains a model with hyperparameters you 
determine (you should do any tuning locally or in a notebook ie don't tune your model in 
gradescope since the autograder will likely timeout). It will take in the CLAMP training data 
(reminder that the “class” column is the target for this dataset), train a model then predict on a 
test set and output values from 0 to 1 for each row and our autograder will compare your 
predictions with the correct answers and to get credit you will need a roc auc score of .9 or 
higher on the test set (should not require much hyperparameter tuning for this dataset). This is 
basically a simulation of how your model would perform in the “production” system using batch 
inference. 
 
 
Deliverables:  

●​ Make use of any of the techniques we covered in this project to train a model and return 
predicted probabilities for each row of the test set as a DataFrame with columns index 
(same as your index from the input test df) and malware_score (predicted probabilities). 

●​ Complete the train_model_return_scores function in task5.py 
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●​ Submit task5.py to Gradescope 
 
 

FAQs 
●​ How many submissions do we have in Gradescope? 

○​ Answer: Unlimited 
 

●​ How many Attempts do we get on the quiz? 
○​ You get one submission but the time is unlimited (until the due date) so don’t 

submit until you are finished. Canvas will allow you to close the quiz window and 
should save your quiz progress but it may be a good idea to note your answers to 
the quiz somewhere on your computer if you are going to take multiple days to 
finish it just in case something happens to canvas. 

 
●​ When are office hours for this project? 

○​ Answer: There will be a pinned Ed Discussion Post with office hour date/times as 
well as recordings after they take place. 
 

●​ I need an extension for this project 
○​ Answer: Open a private Ed Discussion post with your situation and we will 

determine if it is an approved reason for an extension and decide how many 
extra days you will get. Note: The earlier you tell us the more likely that we can 
give you an extension (ie asking the day it is due will make it very unlikely that 
you will get an approved extension) 
 

●​ I am overwhelmed and don’t know where to start. 
○​ Answer: Start simple with reviewing the useful links we have provided and doing 

the coding tasks (tasks 1-5) in order. They will somewhat build on each other and 
will get progressively harder so early tasks are easier to complete. 
 

●​ I am using RFE to find the feature importance of a random forest or gradient boosting 
model and it is running for a long time and timing out in the autograder 

○​ Answer: Only use RFE for logistic regression models and use the built in values 
of feature importance for random forest and gradient boosting models. 

●​ Should I make my own post related to this project in Ed Discussion? 
○​ Answer: Please try to ask your question in one of the pinned project posts and 

remove answer data (ie don’t post your code, even snippets) or other information 
that should not be publicly shared and ask in the public forum so others can 
benefit from your questions. 
 

●​ I can't see any scores/output in the autograder is it broken? 
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○​ Answer: We have a protection in the autograder to prevent printing sensitive 
information so if your code has print statements then you wont see your score or 
any outputs of the autograder. Please resubmit your code with print statements 
removed and you should see the normal outputs. 
 

●​ Can you review my code in a private Ed Discussion Post? 
○​ Answer: Since we have a Gradescope autograder we will not be reviewing code 

of students and expect you to debug your code using information in public posts 
in Ed Discussion or via google searches/stack overflow. 
 

●​ I think I found a bug in the Autograder 
○​ Answer: Open a private Ed Discussion Post and we can take a look. This is the 

first semester we are running this version of the project and while we tested it 
internally with the TAs there is a chance that we missed something. If this 
happens we will make an update to the autograder to fix it and will make a pinned 
post letting students know the autograder was changed. 
 

●​ I have constructive feedback that can improve this project for next semester 
○​ Answer: Open a private Ed Discussion Post and we will review your ideas and 

may implement them in a future semester. 
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