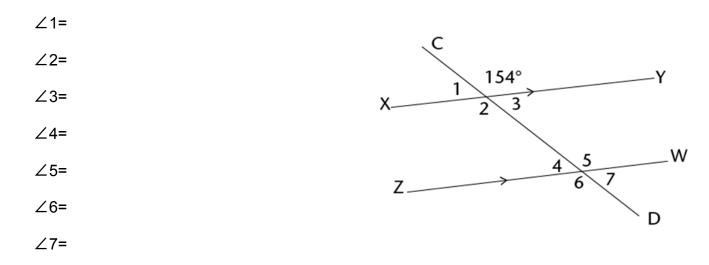

Segment 1 Review - Part One

WATCH VIDEO PART 1(click here)

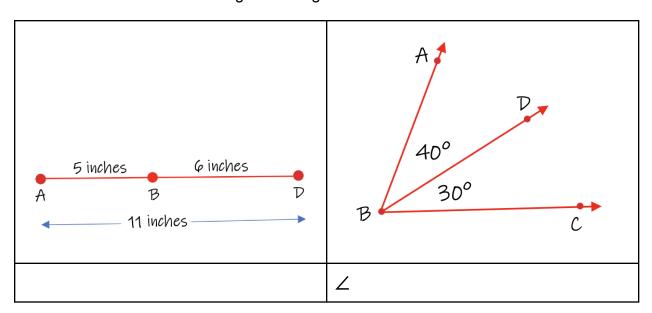
Slide 1: Undefined Terms vs Defined Terms

	Parallel lines:		
	Line segment:		
	Circle:		
Slide 2 : Cop	ying an Angle with a	a compass and Ruler	
y x		Step 1	
B C		Step 2	
a c		Step 3	

Click here for help with the other constructions


Slide 3: Logic Statements

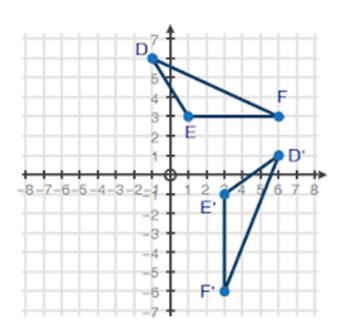
Type of Statement	Conditional statement	Converse	Inverse	Contrapositive
Definition	an assertion that states an event is dependent upon another event occurring; in the form of "if, then"	a statement created by switching around the hypothesis, or "front," and the conclusion, or "back," of the original statement	the inverse of a statement is the statement in the same order with both parts negated	a statement in the opposite order of an original statement with both parts negated
Formula	If p, then q	If q, then p	If not p, then not q	If not q, then not p
Example				


Slide 4: Angle Relationships

Alternate Interior Angles	
Alternate Exterior Angles	
Corresponding Angles	1 / 2 / k
Vertical Angles	5 6 8 7
Same Side Interior Angles	
Same Side Exterior Angles	1

Slide 5: Application of Angle Relationships

Slide 6: Angle and Segment Addition Postulates

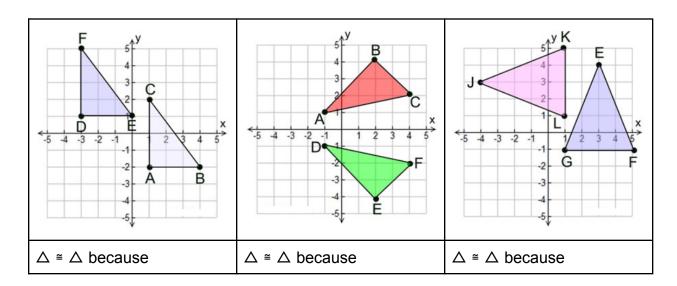

Slide 7: Translations

Pre-Image	Translation Rule	Image

Slide 8: Series of Transformations

Pre-Image	Translation Rule	Image
A(1, 1)	Rotate 180°	
A'(Reflect over the y-axis	
A"(Reflect over the x-axis	

Slide 9: Determining The Transformation



What transformation took place?

Slide 10: Rigid And Non-Rigid

Transformations & Congruence

Rigid transformations:

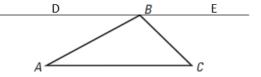
Slide 11: Inscribed Polygons (Honors Only)

Inscribed Hexagon	Inscribed Triangle	Inscribed Square

Slide 12: Angle of Rotation (Honors Only)

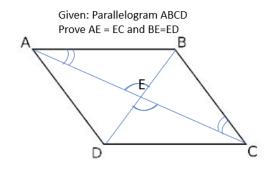
To find the angle of rotation,

Segment 1 Review - Part Two

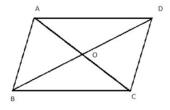

WATCH VIDEO PART 2 (Click Here)

Slide 1: Triangle Congruence Postulates

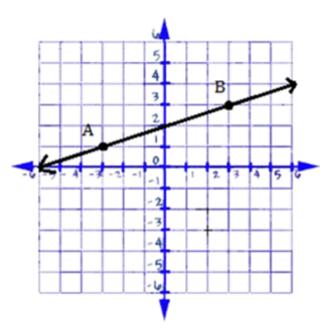
 1. 2. 3. 4. 	1.
5.	3.
	SSA is not sufficient for congruency. It may make two different triangles.


Slide 2: Triangle Sum Theorem Proof

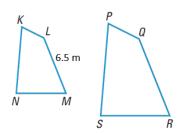
Given: Triangle ABC Prove: < BCA + < ABC + < CAB = 180


Statements	Reasons

Slide 3: Diagonals in a Parallelogram Bisect Each Other Proof


Statements	Reasons

Slide 4:Parallelogram Application

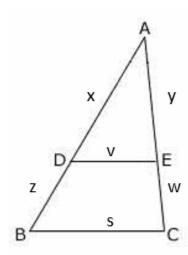

ABCD is a parallelogram. If m∠BAD = 121°, What else do we know?

Slide 5: Dilations

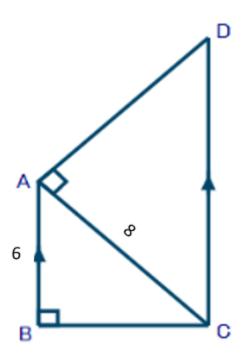

Line g is dilated by a scale factor of 2 from the origin to create line g'. Where are points A' and B' located after dilation, and how are lines g and g' related?

Slide 6: Dilations

A photocopier was used to dilate a quadrilateral. The figure shows the quadrilateral and its photocopy: The ratio of KL:PQ is 1:2. What is the length, in meters, of side QR on the photocopied image?


Slide 7: Applying the Triangle Proportionality Theorem

Given: Triangle ABC and line DE || AB What all do we know?


Slide 8: Applying the Midpoint Theorem

If point E is the midpoint of AC and point D is the midpoint of AB, which expression represents the value of v?

Slide 9: Similar Triangles

Given the figure below How long is DC?

