
ShadowRealm Host Hooks Summary

Contact: legendecas@gmail.com
Status: Draft | Accepted | Done​
Bug: v8:11989

Original Design Doc: Design Doc: ShadowRealm Host hooks
Reviewers: verwaest@, syg@, yukishiino@

Objective
-​ Allow hosts to hook into the creation of the ShadowRealm globals, as well as how those

globals delegate answers up to their creator realm.
-​ The shadow realm needs to know its parent realm to get at the settings object for web

API.
-​ To be able to leverage the existing security checks for access globals.

Design
There are one host hooks added and one host hook updated.

Hooks to create ShadowRealm
Hosts are expected to expose some useful APIs like EventTarget, atob, TextEncoder, URL, etc.
in the ShadowRealm, and this is in the process of web standardization (tracked here
​​https://github.com/tc39/proposal-shadowrealm/issues/331).

Requirements:

1.​ The hook should allow hosts to utilize the global object template to generate global
properties (Blink)

2.​ The hook should allow hosts to call javascript functions to bootstrap the global properties
(Node.js/Deno)

A new host hook is added to delegate the context creation to the host so that hosts are free to
choose which Context::New to create the context with whatever they need (from snapshot or
from scratch).

using HostCreateShadowRealmContextCallback = MaybeLocal<Context>

(*)(Local<Context> initiator_context);​

Isolate::SetHostCreateShadowRealmContextCallback(HostCreateShadowRealmConte

xtCallback);

https://docs.google.com/document/d/1k9OZxtbKmzENOMzahmm2C0uBNRc_pVLXMSoKsrkJJBw/edit#
https://bugs.chromium.org/p/v8/issues/detail?id=11989
https://github.com/tc39/proposal-shadowrealm/issues/331

It is the host's choice to call Context::New, and it is the host’s choice of what APIs should
present in the ShadowRealm global.

Since the ShadowRealm JavaScript API doesn’t expose any means to exchange JavaScript
objects between realms, host-defined APIs like URL, TextEncoder, etc. must not introduce any
means to break the limitation.

Modules
In ShadowRealm, it is also possible to import modules like what we have in the main context.
The notable thing is that the referrer parameter is empty (according to the spec, step 10) when
the dynamic import is initiated by ShadowRealm.prototype.importValue. For runtimes that
resolve specifiers based on the referrer, their algorithms to resolve the referenced module may
need to adopt the change.

To reflect the change, HostImportModuleDynamicallyWithImportAssertionsCallback is updated
with the referrer parameter to be a MaybeLocal<ScriptOrModule>:

using HostImportModuleDynamicallyWithImportAssertionsCallback =​
 MaybeLocal<Promise> (*)(

 Local<Context> context,​
 MaybeLocal<ScriptOrModule> referrer, // This may be empty​
 Local<String> specifier,​
 Local<FixedArray> import_assertions

);

Security Checks
On ShadowRealm, the same constraints and security checks on dynamic code generation are
applied as same as the main context: through isolate hooks. E.g.

-​ HostEnsureCanCompileStrings
-​ AccessCheckCallback and FailedAccessCheckCallback.

https://tc39.es/proposal-shadowrealm/#sec-shadowrealmimportvalue
https://tc39.es/ecma262/#sec-hostensurecancompilestrings

	ShadowRealm Host Hooks Summary
	Objective
	Design
	Hooks to create ShadowRealm
	Modules
	Security Checks

