
Bazel Catalog Design Proposal
Author: Xiaoyi Shi <ashi009@gmail.com>
Status: Draft
Created: 2022-02-14
Updated: 2022-02-15

Objective
Build a catalog for users with different levels of familiarity with Bazel.

User Groups

Beginners
They are unfamiliar with bazel and have little knowledge of how bazel works.
They want tutorials and guidelines.

- See what can be done with bazel (without purpose)
- recommended rules (say official rules)

- Docs/codelabs
- how to use bazel (build/test)
- how to use a rule

- Tools
- bazelisk
- ibazel
- gazelle

Intermediate Users
They know how to bazel build/test, edit build files, has some knowledge of how bazel works.
They want to explore what can be done with bazel, and migrate the existing codebase to bazel.

- Find rules for doing certain things (with purpose)
- query by language
- query on input file type
- compare ruleset based on some metrics (eg. project health, traffic, etc.)

- Doc/codelabs
- bazel internals
- bazel query
- how to write a rule
- setting up remote cache

https://github.com/dogweather/repo-health-check


- setting up remote execution
- migration (xcode/maven/npm/…)

- Tools
- tulsi

Experts
They are experts in bazel, knowing advanced concepts, internals, and usage of advanced bazel
subcommands.

As the name implies, they are likely to be the decision maker for an organization on which
ruleset/tool to use. So they want to know ruleset/tool in depth and they also so want to make
upgrades to be smooth.

- Show rules in depth
- toolchain
- platform
- configuration/transition
- providers
- remote execution capability
- compatibility with other rules
- design decisions
- future plan
- dev tool integration (eg. gopackagedriver)
- CI results
- vulnerabilities

- Docs
- Release notes (changes since X, migration path, etc)

- Tools
- ???

Data Expectation

Ruleset
The following table contains almost all the data relevant to a ruleset. The data has been
categorized to meet the expectations of different user groups.

The background color identifies the difficulty of getting the data, and it increases in the order of
green, yellow, orange, and red.

Type User Groups Source Comment



Metadata
- canonical name
- repo
- desc
- authors
- Semver

guarantee, is it
1.0 yet?

- releases (tags as
a fallback)

- bzlmod?
compatibility

- license

All Automated from BCR/Repo
Manually from rule authors

Either from MODULE.bazel file or inferred
from the github repo metadata.
(We may ask maintainers to add tags to their
GitHub project)

Editorial
Recommendations

Beginner Manually from editors With some structured formats? or just text?

Project Popularity Beginner, Intermediate
Users

Automated from Repo (release
downloads, traffic)

https://shields.io/category/downloads

conceptually identical to what npm is doing
Searching for and choosing packages to
download | npm Docs

+ starts/forks

Project Health Beginner, Intermediate
Users

Automated from Repo (questionable
signal quality)

GitHub - dogweather/repo-health-check:
Analyze a project: How are the maintainers
doing?

not sure if their evaluation is good, as the
project itself is 8 years old.

Project Quality Beginner, Intermediate
Users

Automated from Repo (questionable
signal quality)

Community metrics - GitHub Docs identical to
npm's quality metric.

Project Activity All Automated from Repo
(PRs/Issues/Commits)

https://shields.io/category/activity

Module Functionality
- rules
- providers
- functions
- aspects

All Automated from Repo Use stardoc to convert them to proto?

Module Quality
- skylint
- feature-related

quality aspects
(eg. is this python
rule comes with a

All Automated from Repo
Manually from editors

The manual part is difficult to implement, as
different rules need to be evaluated with
different criteria. But this info could save
users lots of time and help them make the
decision.

https://shields.io/category/downloads
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download#package-search-rank-criteria
https://docs.npmjs.com/searching-for-and-choosing-packages-to-download#package-search-rank-criteria
https://github.com/dogweather/repo-health-check#automated-signals
https://github.com/dogweather/repo-health-check#automated-signals
https://github.com/dogweather/repo-health-check#automated-signals
https://docs.github.com/en/rest/metrics/community#get-community-profile-metrics
https://shields.io/category/activity


hermetic
toolchain? or is
this proto rule
force user to
copy-paste a
fixed set of
deps?)

Toolchain Experts Automated from Repo easy for bzlmod, not sure how to do with

Platform Experts Automated from Repo easy for bzlmod

Configuration/Transition Experts Automated from Repo

RBE Support Experts Manually from rule authors

Design Docs
- Design Decisions
- Future Plan

Experts Manually from rule authors

Dev Tool Integration
- gazelle
- LSP/IDE

Intermediate Users,
Experts

Manually from rule authors Maybe some predefined tags?

CI status of HEAD Experts Automated from Repo reuse .presubmit.yml and run checks as
github actions on releases?

Also mentioned at
https://github.com/bazel-contrib/SIG-rules-aut
hors/issues/2#issuecomment-1142625002

Vulnerabilities Experts Manual? Although a defect in a ruleset most likely
affects only the build time. However, given the
emergence of image rules, it may have
far-reaching consequences.

No source for this.

Other Resources
Other resources are less structured, so links to resources and editorial comments would be
sufficient. However, if we want to make them easy to browse, these links need to be put into
categories. eg. https://github.com/jin/awesome-bazel#toolchains.

Given that our focus is mostly on rulesets, this part can be ignored for now.

https://github.com/bazel-contrib/SIG-rules-authors/issues/2#issuecomment-1142625002
https://github.com/bazel-contrib/SIG-rules-authors/issues/2#issuecomment-1142625002
https://github.com/jin/awesome-bazel#toolchains


Data Ingest Pipeline

Requirements
To support client search/filter and avoid exhausting the GH API quota (even though most of the
data is publicly readable), we need to materialize all the data to storage beforehand.

To make this work as easy as possible, instead of having everything built into a comprehensive
service, we should build tools that dump data to storage as cronjobs. Once the data is ready, we
can use an SSR framework to render the final catalog pages as cronjobs as well.

Process
1. Create a Github App to read automated signals

Compared to using a pool of private tokens, this allows us to have independent quotas
for each installation (5,000 requests per hour). Which will make it less likely to hit any quota
limit.

2. Install the Github App to a ruleset repo that wants to be listed on the catalog

This also verifies that whoever is asking to enroll is the maintainer of the ruleset, and
thus has consented.

3. The Github App creates a commit/PR for adding a single ruleset once the installation is
done

This will add a directory (slightly different from today's big json file) and a metadata file
for the ruleset. The reason for this is that we can throw additional data into that directory
at later stages without worrying about merge conflicts.

4. Run cronjobs to retrieve automated signals

Cronjobs are run with the Github App's identity and all the fetched data are stored in
their dedicated data file (ideally as time-series.)

5. Run a tool to generate the catalog page as a cronjob and/or triggered by push events

Could be a bazel build and then commit the generated files to gh-pages branch.

NOTE: manual signals can be added at any time with PRs
NOTE: use a pin/marker file to make the cronjob stateless
TODO: what to do when someone uninstalls??



TODO: figure out if https://github.com/just-the-docs/just-the-docs is good enough for the job

https://github.com/just-the-docs/just-the-docs

