
Section Notes 6 

I/O and Advanced Caching 

Overview 
●​ I/O System Calls and File Descriptors 
●​ Stdio vs. System Calls 
●​ Data Structures with Caches 
●​ Access Patterns 

○​ true/false 
○​ reference strings exercises 
○​ caching algorithms 

●​ Cache Tags (and other pset questions!) 

 

I/O System Calls, File Descriptors 
The Linux kernel maintains a descriptor table containing an entry for each open I/O resource: 
a file, a network connection, a pipe (a communication channel between processes), a terminal, 
etc. 
A file descriptor is an index into this table. 
 

 
Logically, a file descriptor comprises a file object, which represents the underlying data (such as 
/home/kohler/grades.txt), and a position, which is an offset into the file. There can be many file 



descriptors simultaneously open for the same file object, each with a different position. For disk 
files, the position can be explicitly changed: a process can rewind and re-read part of a file, for 
example, or skip around, as we saw with strided I/O patterns. These files are called seekable. 
However, not all types of file descriptor are seekable. Most communication channels between 
processes aren’t, and neither are network channels.  
 
When a process starts, three file descriptors are generated by the kernel for us. File descriptor 0 
refers to stdin (the input stream, in a shell the terminal (your keyboard) is the default 
connection), file descriptor 1 refers to stdout (the output stream, the default is to print to your 
shell), and file descriptor 2 refers to stderr (the error stream, the default is to print to your shell). 
 
If the program needs to open other streams it can do so with a number of system calls. 
For more information: man 2 <system-call> 
 
int open(const char *path, int oflag, ...) 

●​ system call; open a file with the given path and flags 
●​ returns a file descriptor for the file (non-negative), or -1 on failure 

 
oflag is obtained by ORing the following values together. See more flags in the man page. 

O_RDONLY open for reading only 0x0000 

O_WRONLY open for writing only 0x0001 

O_RDWR open for reading and writing 0x0002 

O_CREAT create file if it does not exist 0x0040 

O_TRUNC truncate size to 0 0x0200 

O_SYNC synchronous call (write directly to disk) 0x1000 

 
ssize_t read(int fd, void *buf, size_t count) 

●​ system call 
●​ attempts to read `count` bytes into `buf` from the given file descriptor `fd` 
●​ returns number of bytes read. This is usually `count`, but may be less. 0 indicates end of 

file, and -1 indicates error. 
●​ If N bytes are available, where 0 < N < `count`, and read() is reading from a “slow” file 

descriptor (i.e., a file descriptor where the writing end might never provide more bytes, 
such as a network connection or a pipe), then read() will return N (a short count). 

 
ssize_t write(int fd, const void *buf, size_t count) 

●​ system call 
●​ attempts to write `count` bytes from `buf` to the given file descriptor `fd` 
●​ returns number of bytes written. This is usually `count`, but may be less. -1 indicates 



error. 
 
int close(int fd) 

●​ system call 
●​ closes the file descriptor and returns 0 on success, -1 on error 
●​ it is important that we close all files that we do not need to allow the OS to reclaim 

resources 
 
Before we start working with the system calls you will notice that both read and write use a 
size_t as an argument but both return a ssize_t. This is a value with the same number of bits as 
size_t, but it is signed, rather than unsigned. Why doesn’t either call return a size_t?  

Standard I/O (stdio) 
The stdio library is a wrapper for I/O system calls that performs buffering. The purpose of the 
stdio library is to speed up I/O calls by (1) reducing the amount of system calls, and (2) caching 
data being read/written. See the man page for more information: man 3 <library-call> 
 
FILE *fopen(const char *restrict filename, const char *restrict mode); 

●​ Instead of returning a file descriptor, this returns a pointer to a FILE struct 
 
size_t fread(void *restrict ptr, size_t size, size_t nitems, FILE *restrict stream); 

●​ reads size * nitems bytes into buffer ptr from the FILE pointer stream 
●​ performs buffered I/O--the stdin library maintains a cache of data so that subsequent 

reads are faster 
●​ returns the actual number of items read 
●​ Where read() may return early if it temporarily runs out of bytes, fread() will not. It waits 

until size*nitems bytes are read or the file truly ends. 
 
size_t fwrite(const void *restrict ptr, size_t size, size_t nitems, FILE *restrict stream); 

●​ writes nitems * size bytes from ptr into the FILE pointer stream 
●​ performs buffered I/O--the stdin library batches write requests to minimize the number of 

system calls 
 
int fclose(FILE *stream); 

●​ stdio library version of close 

Stdio vs. system calls 

Check out the s06/stdio directory in the cs61-sections repository. This contains four programs, 
two readers and two writers. The `f` versions use stdio, and the other versions don’t. Each 
program works in a loop. It reads or writes a B-byte block, then waits for some delay and starts 



again. 
 
Try this: 
% ./reader < reader.c 
% ./reader -d 0.2 < reader.c 
% ./writer | ./reader 
% ./freader -d 0.2 < reader.c 
% ./fwriter | ./freader 
 
The ./fwriter | ./freader execution has different behavior than the ./writer | ./reader 
execution! Can you say why? 
 
The stdio library functions are written in terms of the system calls the operating system 
supports. Stdio implements other functionality, such as buffering and caching, on top, just like 
you will in pset2. We can get an idea for how stdio is implemented by looking at the system calls 
it makes. The `strace` program runs another program, but prints to standard error a readable 
version of every system call that program makes. Let’s use strace to investigate these 
programs’ operating system behavior. Some things to try: 
 
% ./writer 2>/dev/null | strace ./reader 
What does `2>/dev/null` do? 
 
% ./fwriter 2>/dev/null | strace ./freader 
How are the freader system calls different? 
 
% ./fwriter -n | ./freader 
How is this behavior different? What do you think is going on? 
 
How would you write a version of fread() that used the read() system call directly? We’ve 
supplied an incorrect skeleton version at the end of freader.c. What is wrong with this skeleton? 
How would you fix it? (Note: Don’t worry about niceties like the file “error indicator”; just consider 
what bytes are read and what values are returned.) 
 
 
 

 



Speeding up Data Structures with Caches 
 
First step’s first. Pull new section code. This week’s code will be in directory s06/ in the 
cs61-sections repository. 
 
Overview: 
With 3 different data structures: 

(A)​numwave-list : Doubly Linked List 
(B)​numwave-vector : Vector 

 
Given N: 

(1)​ Insert N random integers into a data structure. Keep that data structure in sorted order at 
all times. 

(2)​N times, select a random integer in the data structure and delete it. Continue to hold the 
invariant that the data structure is sorted. 

 
Some questions that we hope to address.  
Which method is faster? Why? How does and doesn’t caching play a role in each of these? 
 
Doubly Linked List: 

void list_add(struct link** list, value_t value) {​
    struct link *newlink;​
    while (*list && (*list)->value < value) // 1​
​ list = &(*list)->next;​
    newlink = list_alloc(); // 2​
    newlink->value = value;​
    newlink->next = *list;​
    *list = newlink;​
} 

 

void list_remove(struct link** list, unsigned position) {​
    struct link* todelete;​
    while (position > 0) { // 3​
​ list = &(*list)->next;​
​ --position;​
    }​
    todelete = *list;​
    *list = todelete->next;​
    list_free(todelete);​
} 



 
Q.​ Where is the location of the memory of LINE 2 relative to the previously added number? 
Q.​ How many cache lines are accessed on LINE 1? 
Q.​ How many cache lines are accessed on LINE 3? 

 
Vector: 

void vector_add(struct vector* v, value_t value) {​
    unsigned position = 0;​
    while (position != v->size && v->data[position] < value) //1 ​
​ ++position;​
    if (v->size == v->capacity)​
​ vector_grow(v); // 2​
    memmove(&v->data[position + 1], &v->data[position],​
​     sizeof(value_t) * (v->size - position)); // 3​
    v->data[position] = value;​
    ++v->size;​
} 
 

void vector_remove(struct vector* v, unsigned position) {​
    unsigned cur_position = 0;​
    while (cur_position != position) // 4​
​ ++cur_position;​
    memmove(&v->data[cur_position], &v->data[cur_position + 1],​
​     sizeof(value_t) * (v->size - cur_position - 1)); // 5​
    --v->size;​
} 

 
Q.​ How many cache lines are accessed on LINE 1? 
Q.​ How many cache lines are accessed on LINE 4? 
Q.​ How often is LINE 2 called relative to LINE 2 of the DLL Method( i.e. how many times is 

vector_grow() called vs. list_alloc())? 
Q.​ Is LINE 3 a “fast” or “slow” function call? 
Q.​ How many cache lines are access on LINE 4? 
Q.​ Is Line 5 a “fast” or “slow” function call? 

 
Conclusion: 
Basic principles for “good” memory usage: 

-​ Don’t store data unnecessarily 
-​ Keep data compact 
-​ Access memory in a predictable manner.  



Access Patterns 

True/False 
1.​ A direct-mapped cache with N or more slots can handle any reference string 

containing ≤N distinct addresses with no misses except for cold misses. 
 

2.​ A fully-associative cache with N or more slots can handle any reference string 
containing ≤N distinct addresses with no misses except for cold misses. 

 
3.​ An operating system’s buffer cache is generally fully associative. 

 
4.​ The least-recently-used eviction policy is more useful for very large files that are 

read sequentially than it is for stacks. 
 

5.​ Making a cache bigger can lower its hit rate for a given workload 
 

6.​ x86 processor caches are coherent (i.e., always appear to contain the most 
up-to-date values). 

 
 
 

 

 



Reference Strings 
 

Name​ String 
α​ 1 
β​ 1, 2 
γ​ 1, 2, 3, 4, 5 
δ​ 2, 4 
ε​ 5, 2, 4, 2 

 
 
Which of the strings might indicate a sequential access pattern? Circle all that apply. 
 
α​ β​ γ​ δ​ ε​ None of these 
 
Which of the strings might indicate a strided access pattern with stride >1? Circle all that apply. 
 
α​ β​ γ​ δ​ ε​ None of these 
 
The remaining questions concern concatenated permutations of these five strings. For example, 
the permutation αβγδε refers to this reference string: 
 
1, 1, 2, 1, 2, 3, 4, 5, 2, 4, 5, 2, 4, 2. 
We pass such permutations through an initially-empty, fully-associative cache with 3 slots, and 
observe the numbers of hits. 
 
How many cold misses might a permutation observe? Circle all that apply. 
 
0​ 1​ 2​ 3​ 4​ 5​ Some other number 
 
 
How many hits does this permutation observe under FIFO eviction? 
 
 
Give a permutation that will observe 8 hits under LRU eviction, which is the maximum for 
any permutation. There are several possible answers. (Write your answer as a 
permutation of αβγδε. For partial credit, find a permutation that has 7 hits, etc.) 
 
 
 
Give a permutation that will observe 2 hits under LRU eviction, which is the minimum for 
any permutation. There is one unique answer. (Write your answer as a permutation of 



αβγδε. For partial credit, find a permutation that has 3 hits, etc.) 
 

 



Be a Caching Algorithm! 
 
You are given the following access pattern and a 4 slot fully associative cache. 
 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 

Access a b c d b e a d c f e a d 

 
 
Cache 

Slot 0 1 2 3 

Data     

 
Question: What is in the cache after all 13 accesses are complete if we use the optimal 
replacement strategy? 
 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 

Access a b c d b e a d c f e a d 

Slot 0              

Slot 1              

Slot 2              

Slot 3              

 

Slot 0 1 2 3 

Data     

 
Question: What is the hit ratio? 
 
 
Question: List the time steps that were cold misses. 
 
 
Question: If we chose to evict the least recently used (LRU) slot what would be in the 
cache at the end? 



 

Time 1 2 3 4 5 6 7 8 9 10 11 12 13 

Access a b c d b e a d c f e a d 

Slot 0              

Slot 1              

Slot 2              

Slot 3              

 

Slot 0 1 2 3 

Data     

 
Question: What is the hit ratio under LRU? 
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