Understanding the Entanglement of Soft Fibers for Robotic Hair Brushing

Josie Hughes¹, Thomas Bolton Plumb-Reyes², L. Mahadevan² and Daniela Rus¹

Abstract— The brushing of hair requires a complex under standing of the interaction between soft hair fibers and the soft brushing device. It is also reliant on having both visual and tactile information. By developing a model of soft tangled fiber bundles, we can gain a better understanding of how to manipulate and brush hair. This allows us to develop a method for optimizing hair brushing which seeks to minimize pain and avoid the build up of 'jammed' entanglements. Using this approach, we develop an experimental setup with a custom soft sensorized brush end effector which can be used to perform closed-loop control on hair of different curliness. This utilizes computer vision to assess the curliness of the hair, after which the hair is brushed using a closed loop controller. To demonstrate this approach hair brushing experiments have been performed on a wide variety of wigs with amount of curl. In addition to hair brushing the insight provided by this model driven approach could be applied to brushing of fibers for textiles, or animal fibers.

I. INTRODUCTION

Soft robotics is rapidly furthering out understanding of the design, control and fabrication of softer structures and systems [1]. It is also extending our understanding of how we interact with complex, soft objects and environments [2] through the provision of improved modeling techniques and controllers. This expands the range of materials and environments within which robots can operate effectively, allow robots to perform some of the more complex tasks alongside humans perform with ease. One such application area where this is particularly the case is in assistance and care robots [3]. With the globally increasing population, longer life expectancy and growing demands on health care systems, the use of robots in personal care and assistance is one area where robots could make a significant humanitarian impact [4].

With current advances in soft robotic technologies, ma chine learning and modelling, developing robots for care and health care applications is becoming increasing feasible [5]. Within this domain one task which has had limited explo ration is hair-brushing. Although a routine tasks for humans, it relies on a complex understanding between the interaction between the deformable brush bristles and the soft hair fibers, and requires both visual and tactile feedback. Hair brushing is typically a self-care task, however for the elderly, young, or those who can not physically perform the task, it has been shown that having assistance in this task benefits both mental and physical health [6].

¹Josie Hughes and Daniela Rus are with the Distributed Robotics Lab, MIT. josieh@mit.edu, rus@mit.edu

²Thomas Bolton Plumb-Reyes and L. Mahadevan2 are with the Soft Math Lab, Harvard

Fig. 1. Experimental setup for the investigation of robotic hair brushing showing the wig, sensorized brush and robot arm.

Within the domain of robots for personal care, there have been a number of notable examples. There has been the development of robotic systems for hair washing[7], shav ing and make-up assistant robot [8], [9], and rehabilitation robots[10]. There is also increasing interest in the possi bilities for robotic care-givers. or robots that support human care-givers[11]. To allow robots to extend their task solving abilities to more complex tasks such as hairbrushing, we need not only novel safe hardware, but also an understanding of the complex behavior of the soft hair and tangled fibers.

The goal of this work is to develop a platform to explore the complex task of the manipulation and brushing of hair fibers. In particular to develop a model of soft fiber bundles which considers the complex tangling behavior when under going manipulation or brushing interactions. The ability to manipulate soft fiber bundles has a wide range of applications including hair brushing or textile fiber manipulation. In this project we will focus on how the model can be applied to the problem of hair brushing, developing a control approach to allow a robot with a sensorized soft bristle brush to comb hair using an approach which minimizes conclusions. the 'pain' felt by the user, and the time spend undertaking the procedure.

This task is complex as every head of hair is different, and the interaction between hairs when A. Model of Untangling Natural Curl combing is highly complex, with jamming and tangles forming depending on the brushing strategy used. If the the many-body and extended nature of the entangled incorrect brushing strategy is used, the process can be hair interactions. To better understand the behavior of very painful and damaging

to the hair. Thus, we need to understand the interactions between the soft hair strands to allow the principles behind an efficient hair brushing to be identified. In addition, we need to also develop methods of incorporating sensory information (visual and force feedback) to create an effective brushing strategy. Whilst there has been some prior modelling and investigation of hair brushing and combing, the focus has predominantly been on the mechanical, dynamic and visual properties of hair [12]-[14], opposed to the tangling and combing behavior.

Our approach to robot hair brushing utilizes a model of entangled soft fiber bundles as sets of entwined double helices. This provides an improved understanding of hair brushing and entangled hairs and allows us to identify the key characteristics of soft hair which influence brushing strategies. To brush and manipulate the hair we have created a soft bristle end effector which is sensorized to allow forces during brushing to be measured. Using this sensorized soft brushing end effector (Fig. 1), we can explore how this model can be used to optimize the control strategy for hair brushing. Using this setup, we propose a control strategy that uses force-feedback from the sensorized brush. We demonstrate this approach on a number of wigs which represent a wide range of different hair styles and types, and demonstrate how our control approach utilizes our improved understanding of hair combing to minimize both time and pain. As such, we make a number of contributions:

· A robotic setup with a sensorized soft brushing end effector that allows for hair-brushing to be investigated · A control strategy based on a novel model of the

knotting and tangling of soft bundles of fibers · Demonstration of the approach on a number of different hair types and different measured of tangle

The remainder of the paper is organized as follows. Section II introduces the methods, including the model of tangled fibers used, and how this has been used to inform the development of a control strategy. Section III presents the experimental setup for the hair brushing experiments, and the methods of sensorizing the system and implementing the control strategy. The results from experiments are given in Section IV, which is followed by Section V, a discussion and of the outcomes of the paper and a review of the main

II. METHODS

The complexity of modeling hair combing arises from untangling, we consider a minimal model which has been developed to describe the combing: a double helix [15]. This model considers two entwined helices of the same chirality, clamped at the top end and hanging freely at the bottom (Fig. 2). As a single, stiff comb bristle moves through the double-helix, it leaves two untangled filaments in its wake.

There are two key phenomena involved in this interac tion, link current and over/under winding. Overand under winding describe the stretching of the clamped end of the helices (between the fixed upper base and the comb) and the compression of the free end, respectively. When the comb is moved through the helix there is generally an initial rise in the force extension curve before a leveling off, corresponding to an initial over-winding of the helix in front of the tine before a current of link, a topological measure of entanglement, leaves through the free end and softens the curve.

Considering these phenomena can also help explain the utility of the minimal model in relation to the complex reality. The likelihood of an interaction more complex than the pairwise one modeled by the entwined helices increases with the curliness (defined by Eqn 1) of the hairs [15]. However, the closer an entanglement is to the free end, the closer it is to being removed from the hairs. This is captured in the balance between the jamming-like dynamical over-winding of the helices and the detangling loss of link through the free end. Additionally, combing nearer the free ends reduces this many-body complexity concern as pairwise links are can be removed before neighboring hairs can get more involved.

From this model, there are two key results which inform the development of a brushing controller. Firstly, small pitch and more tightly wound helices lead to larger forces required, thus the curlier the hair, the greater the resultant brushing forces. Secondly, starting combing nearer to the free end allows link to propagate out the free end faster and easier. This allows for untangling before the link density in front of the comb becomes too high and the comb/tine begins to jam. Hence we recover the intuitive result that one should start combing ones hair far from the scalp and gradually work upward. Thus, to detangle hair, the hair should be brushed starting from near the free ends and working up, optimally removing a given amount of link entanglements with each brush stroke.

Fig. 2a shows an illustration of this model, and the which the brushing starts. The combing device is kept key parameters which define the double helix model parallel to the and brushed downwards. The force These are P, the length of one entanglement, R the during brushing is measured in the direction of radius of the curl, r the radius of this hair and I_0 , the brushing.

length of the hair. From this, a measure of the amount of curl can be given by P/R, and the number of C. Optimization

The cost of hair brushing has two key components: entanglements to remove through brushing is given by *P/I*. In this work we are going to make the simplifying pain inflicted and time taken. The brushing length (b_l) , assumption that r is approximately constant for human and hence number of entanglements removed in each hair. brush must optimized with respect to these two costs.

B. Problem Definition

The relative costs of these two metric varies for different amount of curl and entanglements ($R_{\rm C}$).

The cost related to pain, can be considered to be pro Given this model, we can define the hair brushing problem. This is the removal of entanglements from portional to the maximum force experienced, and thus hair which is hanging free from the top of the head. The is high for longer brushing lengths on curlier hair. In hair can be described by the length, l_0 , and we define a contrast, the cost relating to time is determined by the curliness ratio R_c as:

Fig. 2. a) Simplified minimal model of a double helix of hair undergoing combing. b) Model of the hair brushing problem showing the hair brush and the quantities that describe the problem.

such that the number of entanglements in the section of the hair can be given by:

$$q_0 = I_0 / P(2)$$

A control approach must be developed to optimize for brushing time, whilst ensuring that the maximum force when brushing (F_{max}) does not exceed the pain threshold F_{T} . This pain threshold has been identified experimentally by brushing hair with a sensorized hairbrush, and identifying the force at which pain starts to be felt. Using the principles identified by the model, the brushing should start from the free end and work upwards to gradually release entanglements. The length and height of the brushing process should be optimized for a given hair type and length. The brush length, b_{i} , for a specific iteration of brushing is measured from the bottom of the hair to the height at

number of brushing cycles, so longer brush lengths across any hair will minimize this cost. For straight hair with low values of R_C the time cost will dominate, thus

 $R_{C} = R/P(1)$ longer brushing value should be selected. In contrast, for curlier hair, the pain cost will dominate so shorter brush lengths should be selected. From the model of hair entangling, we know the relationship between force and curliness is not linear, thus we need a more representative way of formulating this optimization problem.

Fig. 3. Illustration of the optimization problem showing the different regions in which different costs (i.e. pain or time) dominate.

We propose using an adapted Sigmoid function to map from curliness (R_C), to the selection of the initial brushing height (b_{in}) . A Sigmoid function offers a monotonically decreasing function in which for low values of curliness we get a large brushing length, whereas for high curliness we get a shorter brushing length. This is illustrated in Fig. 3. We can describe the optimal brushing height as a function of R_c using this function:

$$b_{l0} = {}^{q}q_{tot} = 1$$

1 + $e^{(k(R_{c+0.5)})}$ (3)

where the value of k should be optimized experimentally by finding the maximum brush length (b/I_0) for a hair with a given curl ratio that does not exceed F_{τ} .

D. Control Approach

estima tion of the initial brushing height can be brushing iterations (i). This boolean condition is defined identified. Although, as a base strategy we can as: increment each brushing iteration by this brush height until the full length is brushed, this assumes ideal behavior and that each entanglement is fully removed = and the hair behaves as a perfect helix.

Using a closed-loop controller allows for online optimiza tion and customization in response of the specific hair. In particular, we can ensure if there is particularly knotted or entangled areas, we can adapt the brushing height to ensure the maximum pain threshold F_{τ} is not exceeded. We propose the following closed-loop controller for iterative brushes which is based upon the optimized brush length identified in (3). Under this controller, after starting from the height optimized for the specific curl ratio, the following round of brushing is adapted is the force experienced is too high, allowing for repeated brushing at low heights if knots occur, or entanglements are not brushed out in a single iteration. In addition, the incremental length added can be increased is forces are significantly lower than the maximum threshold.

An additional component of this controller, is identifying when the hair section is fully brushed. We define this as

Algorithm 1: Closed-loop brushing control

```
Take picture, compute R_c eqn (5), b_{l0} eqn
(3); Initialize sensor and arm;
iteration, i = 0;
b_{i}[i] = b_{i0};
while finished != true do
    move to brushing height b_i[i];
    start brushing in -z direction ;
   f=0;
    while brush height ≤ bottom of hair do
        f= [f; read force];
        if f \ge f_T then
            stop brushing, break;
        end
    end
    stop brushing;
    f_{max} = max(f);
    if f_{max} \ge f_T then
```

$$b_i[i + 1] = b_i[i](F_T/F_{max});$$

else
 $b_i[i + 1] = b_i[i] + b_i - b_i(F_{max}/0.5F_T);$
end
 $i = i + 1;$
end

when the full length of the hair is being brushed, and Using the optimized mapping identified in (3) an there is minimal change in the maximum force between

1, if $|f_{max, i} - f_{max, i-1}| < 0.4 \& b_i \ge l_0 f$ inished

0 otherwise

(4)

where the threshold value was found experimentally.

E. Vision Pipeline

The control approach relies on having an estimation of the metric that defines the curl of the hair, R_c . To

estimate this, an image is taken at a fixed distance away from the head. The image is cropped so to include only the hair and is converted to a greyscale image. From the greyscale image the x and y direction image gradients (G_x and G_y) are found using the Sobel gradient operator [16]. Gradients have been shown to be useful in other texture identification tasks [17]. Images of the hair which are straighter have a far higher component of edges in the x direction, where are curlier has a more equal distribution of edges in the x and y plane. This is visually demonstrated in the gradient plots in Fig. 4. Thus, by taking the ratio between the sum of these two gradient fields we can calculate a metric that provides a ratio of the straightnesss', to the 'curl' of the hair:

Fig. 4. Top - the vision pipeline on example images: cropping, conversion to greyscale, determining gradients and then determining the ratio. Bottom - figure showing the R_c captured using vision, and the measured (R/P) value.

become closer to ${}^{P}G_{x}$, resulting in a ratio which is closer to 1. By placing an upper bound on R_{c} of 1, R_{c} provides a metric of describing the ratio of *P* to *r*.

To demonstrate that these metrics are representative

R_c = abs| PG_y $G_x|$ (5) To test the system and controller, we use a head mount on fig.5.

For straight hair, ${}^{P}G_{y}$ is very small, and thus the ratio R_{c} is approximately 0, where as for curly hair ${}^{P}G_{y}$ starts to

which various wigs can be attached using hair pins. The head is mounted on a variable height mount such that the bottom

and sufficiently accurate for presenting an reasonable measure of the curliness of hair, for a number of different images of hair, we have computed the ratio, R_c , and have plotted against the measured ratio (R/P), which forms the ground truth for this experiment. This results are shown in shown in Fig. 4.

III. EXPERIMENTAL SETUP

To explore the control strategies for hair brushing we have developed an instrumented soft brushing end effector which is mounted on the end of a robot arm. The setup is shown in Fig.5. The robot arm allows for a wide variety of trajectories to be performed and provide speed control. The end effector is constructed from a hairbrush which has soft bristles. The brush is mounted on a pain which connects to a load cell which is mounted on the end effector of the robot arm. This allows the force normal to the load cell to be measured. The signal from the load cell is amplified using an instrumental amplifyer and measured with an microcontroller. The load cell has been calibrated, and the readings are converted into Newtons and send over serial to the control PC at 10Hz. The control policy is implemented, and the hairbrush controlled by sending position control commands to the the robot arm to which the hair brush is attached. A system diagram of the

Fig. 5. Top) The experimental setup and the sensorized hair brush. Bottom)

Block diagram of the hair brushing system.

of the hair is kept in in a fixed location relative to the robot and camera setup. Each wig is set in to a 'pre-brushed' state

by turning upside down and shaking for 10-15 seconds. This

returns the wigs to an entangled state, allows experiments to repeated with a similar state of entagledness.

The wig is placed such that the free end of the hair is at a fixed point relative to the arm. A webcam is also end mounted in a fixed position relative to this position, and the is used to capture the image to determine the curl ratio states R_c . The brushing height can then be determined, and and the brush moved to this height before the brushing mounted from the brush give height in a fixed plane downwards to below the end of the hair. This is repeated until the robot determines the brush received.

IV. EXPERIMENTAL RESULTS

A. Exploration of hair brushing

To demonstrate and validate the model, we have performed a set of brushing experiments for which we show the progression of the force with brushing time. First, we show repeated brushing of a single wig with the brushing height fixed. We see the expected rise in force as the hair fibers start to jam, after which the force applied to the brush overcomes this jamming force and brushes free. The brush force is the highest for the first brush, however, reduces with brushing iterations as with each brush a number of

Fig. 6. Exemplar timeseries from the sensorized hairbrush when brushing i) the same hair at a repeated high for 6 iterations, ii) varying the height of brushing.

entanglements are removed. After three brush cycles the maximum forces measured on each brush cycle starts to plateau, demonstrating that entanglements and jamming has been removed. This validates the method of identifying when brushing has finished as given in (4).

We next perform a similar experiment but where the brush ing height is varied. Each height experiment was repeated 5 times, with the hair 'reset' between experiments. The average of each set of experiments is shown in Fig. 6b. When brushing the entire length of the hair fibers we see the build up forces, with the rate increasing as the fibers jam, until the brush pulls through these entanglements. When the brush height is reduced, the maximum force that is reached reduces

Fig. 7. Variation in maximum force with normalized brushing length for hair with different curliness.

significantly, we also see more reliability in the repeated experiments.

The model suggests that the velocity of brushing should have a minimal effect on the experienced force.

To test this we use the hair brushing platform to explore the optimal value of k is found to be 8.5. It can be seen the variation in force measured for different speeds of that the sigmoid function has been fitted to the points brushing. Fig. 8 shows the variation in maximum such that the curve is lower than any of the brushing force for different brushing speeds. This is experimental results to ensure that the maximum force performed for the two wigs, one straight, one curl, with threshold is not exceed at any points. There appears to the brushing height fixed. The wig reset between each be a close fitting between the experimental results and tests. the sigmoid function, validiating this choice of function.

As expected we see that the velocity has minimal effect on the brushing force, in particular for straight hair. For curly hair, whilst the maximum force is approximately constant, there is far greater uncertainty the controller on a number of wigs which have been for slower motion. This suggests that although velocity selected to show a variety of different lengths, hair does not affect the maximum force, a slightly faster types and curl ratios. We have selected four examples speed reduces variability in the forces experienced with varying hair type to demonstrate the process. In The maximum speed of this experiments was

Fig. 8. Average maximum force for different velocities and orientations of brushing for a fixed brush length, and on the same hair ($R_{C} = 0.4$).

Fig. 9. Optimized sigmoid function (3) to allow identification of the optimal starting brush height for hair with different amounts of curl.

limited by the capabilities of the robot arm, thus remains relatively low; further work could explore the effects of faster more jerky hair brushing motions.

B. Optimization

To optimize the selection of brushing height, we must fit the sigmoid function proposed in (3) to experimental data. For a number of wigs with different hair types, we identify the maximum normalized brushing length that can be performed without exceeding the brushing force threshold, F_{T} . We can then fit a sigmoid function to these data points to identify the optimal value of k to ensure efficient brushing without exceeding the maximum force threshold.

The results of this process shown in Fig. 9, where

C. Brushing Demonstration

To demonstrate the hair brushing approach, we test each of these, we show the iterative brush height that is selected, and the measured maximum force for each of these iterations. This is shown in Fig. 10 alongside before and after photos of the hair. The visual results of the hair before and after are also shown. In can be see than in the case of straight hair, the approach is simplistic, and the estimated ratio perform works well, and minimal iterations are required. As the amount of curl increases, more brush strokes are required, and the forces increase. Finally, when we move to the curliest hair we see the ratio predicted using vision is initially too high, and thus the brush height must be reduced to remove some of the entanglements that form. In all cases we can visually see an improvement of the hair after brushing.

To benchmark and contrast the performance of the control approach developed, we compare the performance in com parison to a 'naive' brushing approach and human brushing.

limited by the capabilities of the robot arm, and thus there is considerable room to optimize this process and close the performance gap in comparison to humans.

Fig. 11. Comparison between developed controller, human brushing and also a naive controller for the consideration of maximum force (top) and brushing time (bottom)..

V. DISCUSSION & CONCLUSION

In this work we introduce a model for the combing of

Fig. 10. Demonstration of hair with increasing curliness using the model provides significant insight in to the behaviors of control approach showing the maximum force and normalized the combing of hair with respect to the number of brushing length for each iteration.

entanglements, and how these can be efficiently and effectively brushed out by choosing appropriate brushing lengths. We propose using a sigmoid function

In the 'naive' approach we brush at a fixed interval to provide selection of brushing height for different hair, which increases by thirds each time (e.g. $B_l = 0.33$, where computer vision is used to identify the curliness 0.67, 1). We also compare it a human baseline where of hair.

the human was asked to brush the section of hair using Using this model, we have developed an control the sensorized hairbrush. Whilst this human baseline approach for brushing hair for various hair types. By considers only a single person and therefore their developing a sensorized soft brush end effector, we specific approach, it does provide an approximate have validated this approach experimentally and bench order of magnitude of their performance. All control marked it in comparison to a human lead approach and strategies were repeated on wigs with a variety of curl a naive approach. Whilst this work has demonstrated ratio with the total time to brush, and also the maximum effective hair-brushing, there is significant further work force recorded. This comparison between approaches for improvement, including inves tigating more complex is shown in Fig. 11.

When considering the maximum force that is more realistic experiments on humans, to gain more achieved the optimized robot solutions show similar subjective feedback from the experimental subjects. response to that of human brushing, although the Pain is a highly complex phenomena, and to truly human performs marginally better at the extremes. The understand the performance of the robot with respect naive approach leads to signifi cantly higher forces for to this metric, human experiments are required.

the curly hair, significantly exceeding the pain threshold One advantage of this approach presented is the $(F_T \ 10N)$, however, this is a faster than the optimized adapt ability of the approach, due to the use of a solution. Throughout the experiments the human sigmoid function to optimize the starting brush height. performs faster, however the robots movement is This allows the model to be easily adapted when the tasks is varied, for example of a different brushing

device, or a different tasks - such as brushing wider/complex complex textile based fibers. By fitting the sigmoid function to a set of minimal experimental data the approach can be readily adapted.

In addition to further exploration of hair brushing, the model of entwined soft hairs could have significant further

applications. For example, it could be used to assist with the development of robotic approaches to dealing with ropes, and fibrous systems, or even robots that efficiently manipulate spaghetti.

ACKNOWLEDGMENT

We would like to acknowledge support of the grants and funding that has made this work possible.

REFERENCES

- [1] D. Rus and M. T. Tolley, "Design, fabrication and control of soft robots," Nature, vol. 521, no. 7553, pp. 467-475, 2015.
- [2] M. Shibata and S. Hirai, "Soft object manipulation simultaneous control of motion bv and deformation," in Proceedings 2006 IEEE Conference on Robotics and International 2460-2465.
- [3] M. Cianchetti, C. Laschi, A. Menciassi, and P. Dario, "Biomedical applications of soft robotics," Nature Reviews Materials, vol. 3, no. 6, pp. 143-153, 2018.
- [4] H. Robinson, B. MacDonald, and E. Broadbent, "The role of healthcare robots for older people at home: A review," International Journal of Social Robotics, vol. 6, no. 4, pp. 575-591, 2014.
- [12] R. L. Akkermans and P. B. Warren, "Multiscale mod elling of human hair," Philosophical Transactions of the Royal Society of London. Mathemat ical, Physical and Series A: Engineering Sciences, vol. 362, no. 1821, pp. 1783-1793, 2004.
- [13] R. E. Rosenblum, W. E. Carlson, and E. Tripp III, "Simulating the structure and dynamics of human hair: Modelling, rendering and animation," The Journal of Visualization and Computer Animation, vol. 2, no. 4, pp. 141-148, 1991.
 - [14] V. Robinson, "A study of damaged hair," J Soc Cosmet Chem, vol. 27, pp. 155–161, 1976.
- [15] T. Bolton Plumb-Reyes, N. Charles, and L. Mahade van, "Combing a double helix,"
- [16] S. Gupta and S. G. Mazumdar, "Sobel edge detection algorithm," International journal of computer science and management Research, vol. 2, no. 2, pp. 1578-1583, 2013.
- [17] K. A. Stevens, "The information content of texture gradients," Biological cybernetics, vol. 42, no. 2, pp. 95–105, 1981.

- [5] H. Banerjee, Z. T. H. Tse, and H. Ren, "Soft robotics with compliance and adaptation for biomedical ap plications and forthcoming challenges," International Journal of Robotics and Automation, vol. 33, no. 1, 2018.
- [6] S. Iliffe, A. Haines, S. Gallivan, A. Booroff, E. Goldenberg, and P. Morgan, "Assessment of elderly people in general practice. 2. functional abilities and medical problems.," Br J Gen Pract, vol. 41, no. 342, pp. 13-15, 1991.
- [7] T. Hirose, S. Fujioka, O. Mizuno, and T. Nakamura, "Development of hair-washing robot equipped with scrubbing fingers," IEEE in 2012 International Con ference on Robotics and Automation, IEEE, 2012, pp. 1970-1975.
- [8] M. J. Topping and J. K. Smith, "The development of handy 1. a robotic system to assist the severely disabled," Technology and Disability, vol. 10, no. 2, pp. 95-105, 1999.
- [9] M. Topping, "An overview of the development of handy 1, a rehabilitation robot to assist the severely disabled," Journal of intelligent and robotic systems, vol. 34, no. 3, pp. 253-263, 2002.
- Automation, 2006. ICRA 2006., IEEE, 2006, pp. [10] P. Polygerinos, Z. Wang, K. C. Galloway, R. J. Wood, and C. J. Walsh, "Soft robotic glove for combined assistance and at-home rehabilitation," Robotics and Autonomous Systems, vol. 73, pp. 135-143, 2015.
 - [11] M. Pfadenhauer and C. Dukat, "Robot caregiver or International robot-supported caregiving?" Journal of Social Robotics, vol. 7, no. 3, pp. 393-406, 2015.