
Slim CI/CD in Bitbucket Pipelines
1.​ General CI/CD rationale
2.​ Problem: dbt CI/CD is well-documented for GitHub and GitLab, both of which have

dbt Cloud support, but some of us have to use Bitbucket for one reason or another1,
and dbt Cloud doesn’t support Bitbucket.

3.​ Solution: Use native Bitbucket features - Pipelines and Downloads - to implement CI
on every pull request and CD on every push to main.

Steps

Step 1: Database prep
1.​ Create a CI user with proper grants in your database
2.​ Either create a CI schema(s) or grant `create on [dbname]` to your CI user
3.​ Create a prod user with proper grants in your database (and possibly mask them

under a parent role?)

Step 2: Repository prep
1.​ Create requirements.txt
2.​ Create .ci/profiles.yml and specify two targets, `ci` and `prod`. Use environmental

variables as content instead of your secret values.
3.​ Create bitbucket-pipelines.yml, with the following contents:

a.​ pull-requests: section for slim CI with artifact download
b.​ branches::main: section for CD and artifact creation + upload

Step 3: Environment prep
1.​ Create a Bitbucket App Password with repository:write privileges
2.​ Set the following Bitbucket repository secrets:

a.​ BITBUCKET_USER: Your username, as found in… (it’s not your sign-up
e-mail!)

b.​ BITBUCKET_APP_PASSWORD (which you just created)
c.​ All the variables in your .ci/profiles.yml

3.​ Enable Bitbucket Pipelines in Repository settings.

Step 4: Test
1.​ File a pull request. It should do a full run + test because there’s no artifacts yet.
2.​ Approve the pull request. It should deploy to your production database and upload

your artifacts.
3.​ Change one model and file another pull request. It should execute only runs and

tests related to that model.

1 Maybe an affirmative case for Bitbucket can be made, but I assume most people are
wedded to it because that’s where Jira lives?

Attached files

requirements.txt
dbt-postgres ~= 1.0 # change to adapter of choice

bitbucket-pipelines.yml
image: python:3.8

pipelines:

 pull-requests:

 '**': # run on any branch

 - step:

 name: Set up and build

 caches:

 - pip

 script:

 # Set up dbt environment + dbt packages. Rather than passing

 # profiles.yml to dbt commands explicitly, we'll store it where dbt

 # expects it:

 - pip install -r requirements.txt

 - mkdir ~/.dbt

 - cp .ci/profiles.yml ~/.dbt/profiles.yml

 - dbt deps

 # The following step downloads dbt artifacts from the Bitbucket

 # Downloads, if available. (They are uploaded there by the CD

 # process -- see "Upload artifacts for slim CI runs" step below.)

 #

 # curl loop ends with "|| true" because we want downstream steps to

 # always run, even if the download fails. Running with "-L" to

 # follow the redirect to S3, -s to suppress output, --fail to avoid

 # outputting files if curl for whatever reason fails and confusing

 # the downstream conditions.

 #

 # ">-" converts newlines into spaces in a multiline YAML entry. This

 # does mean that individual bash commands have to be terminated with

 # a semicolon in order not to conflict with flow keywords (like

 # for-do-done or if-else-fi).

 - >-

 export

API_ROOT="https://api.bitbucket.org/2.0/repositories/$BITBUCKET_REPO_FULL_NAME/downloa

ds";

 mkdir target-deferred/;

 for file in manifest.json run_results.json; do

 curl -s -L --request GET \

 -u "$BITBUCKET_USERNAME:$BITBUCKET_APP_PASSWORD" \

 --url "$API_ROOT/$file" \

 --fail --output target-deferred/$file;

 done || true

 - >-

 if [-f target-deferred/manifest.json]; then

 export DBT_FLAGS="--defer --state target-deferred/ --select

+state:modified";

 else

 export DBT_FLAGS="";

 fi

 # Finally, run dbt commands with the appropriate flag that depends

 # on whether state deferral is available. (We're skipping `dbt

 # snapshot` because only production role can write to it and it's

 # not set up otherwise.)

 - dbt seed

 - dbt run $DBT_FLAGS

 - dbt test $DBT_FLAGS

 # - dbt snapshot $DBT_FLAGS

 branches:

 main:

 - step:

 name: Deploy to production

 caches:

 - pip

 artifacts: # Save the dbt run artifacts for the next step (upload)

 - target/*.json

 script:

 - pip install -r requirements.txt

 - mkdir ~/.dbt

 - cp .ci/profiles.yml ~/.dbt/profiles.yml

 - dbt deps

 - dbt seed --target prod

 - dbt run --target prod

 - dbt snapshot --target prod

 - step:

 name: Upload artifacts for slim CI runs

 script:

 - pipe: atlassian/bitbucket-upload-file:0.3.2

 variables:

 BITBUCKET_USERNAME: $BITBUCKET_USERNAME

 BITBUCKET_APP_PASSWORD: $BITBUCKET_APP_PASSWORD

 FILENAME: 'target/*.json'

.ci/profiles.yml
your_project:

 target: ci

 outputs:

 ci:

 type: postgres

 host: "{{ env_var('DB_CI_HOST') }}"

 port: "{{ env_var('DB_CI_PORT') | int }}"

 user: "{{ env_var('DB_CI_USER') }}"

 password: "{{ env_var('DB_CI_PWD') }}"

 dbname: "{{ env_var('DB_CI_DBNAME') }}"

 schema: "{{ env_var('DB_CI_SCHEMA') }}"

 threads: 16

 keepalives_idle: 0

 prod:

 type: postgres

 host: "{{ env_var('DB_PROD_HOST') }}"

 port: "{{ env_var('DB_PROD_PORT') | int }}"

 user: "{{ env_var('DB_PROD_USER') }}"

 password: "{{ env_var('DB_PROD_PWD') }}"

 dbname: "{{ env_var('DB_PROD_DBNAME') }}"

 schema: "{{ env_var('DB_PROD_SCHEMA') }}"

 threads: 16

 keepalives_idle: 0

Related links
-​ Julia Schottenstein’s blogpost on CI/CD:

https://blog.getdbt.com/adopting-ci-cd-with-dbt-cloud/
-​ Joel Labes’ post on slim CI:

https://discourse.getdbt.com/t/how-we-sped-up-our-ci-runs-by-10x-using-slim-ci/2603

https://blog.getdbt.com/adopting-ci-cd-with-dbt-cloud/
https://discourse.getdbt.com/t/how-we-sped-up-our-ci-runs-by-10x-using-slim-ci/2603

Article: Slim CI/CD in Bitbucket Pipelines without
dbt Cloud
Continuous Integration (CI) sets the system up to test everyone’s pull request before
merging. Continuous Deployment (CD) deploys each approved change to production. “Slim
CI” refers to running/testing only the changed code, thereby saving compute. In summary,
CI/CD automates dbt pipeline testing and deployment.

dbt Cloud, a much beloved method of dbt deployment, supports GitHub- and Gitlab-based
CI/CD out of the box. It doesn’t support Bitbucket, AWS CodeCommit/CodeDeploy, or any
number of other services. But you need not give up hope even if you’re tethered to an
unsupported platform.

Although this article uses Bitbucket Pipelines as the compute service and Bitbucket
Downloads as the storage service, this article should serve as a blueprint for creating a
dbt-based Slim CI/CD anywhere. The idea is always the same:

1.​ Deploy your product and save the deployment artifacts.
2.​ Use the artifacts to allow dbt to determine the stateful changes and run only those

(thereby achieving “slimness”).

Steps required
To accomplish this, we’ll need to prepare three parts of our pipeline to work together:

1.​ Database,
2.​ Repository,
3.​ Bitbucket environment.

Step 1: Database preparation
In general, we want the following:

1.​ Create a CI user with proper grants in your database, including the ability to create
the schema(s) they’ll write to (create on [dbname]).

2.​ Create a prod user with proper grants in your database.

The specifics will differ based on the database type you’re using. To see what constitutes
“proper grants”, please consult the dbt Discourse classic “The exact grant statements we
use in a dbt project” and Matt Mazur’s “Wrangling dbt Database Permissions”.

In my case, I created:

1.​ A dev_ci Postgres user which had been granted a previously created role_dev role
(same as all other development users). role_dev has connect and create grants on
the database.

https://discourse.getdbt.com/t/the-exact-grant-statements-we-use-in-a-dbt-project/430
https://discourse.getdbt.com/t/the-exact-grant-statements-we-use-in-a-dbt-project/430
https://mattmazur.com/2018/06/12/wrangling-dbt-database-permissions/

2.​ A dbt_bitbucket user which has been granted a previously created role_prod role
(same as dbt Cloud prod environment). The role_prod role must have write access to
your production schemas.


```sql 
create role role_dev; 
grant create on database [dbname] to role_dev; 
-- Grant all permissions required for the development role 
create role role_prod; 
grant create on database [dbname] to role_prod; 
– Grant all permissions required for the production role 
 
create role dev_ci with login password ‘[password]’; 
grant role_dev to dev_ci; 
create schema dbt_ci; 
grant all on schema dbt_ci to role_dev; 
alter schema dbt_ci owner to role_dev; 
 
create role dbt_bitbucket with login password ‘[password]’; 
grant role_prod to dbt_bitbucket; 
``` 

Finally - and this might be a Postgres-only step - I had to make sure that the regular
scheduled dbt Cloud jobs connected with a dbt_cloud user with a role_prod grant would be
able to drop and re-create views + tables during their run, which they could not if
dbt_bitbucket had previously created and owned them. To do that, I needed to mask both
roles:

```sql 
alter role dbt_bitbucket set role role_prod; 
alter role dbt_cloud set role role_prod; 
``` 

That way, any tables and views created by either user would be owned by “user” role_prod.

Step 2: Repository preparation
Next, we’ll need to configure the repository. Within the repo, we’ll need to configure:

1.​ The pipeline environment,
2.​ The database connections, and
3.​ The pipeline itself.

Pipeline environment: requirements.txt
You’ll need at least your dbt-adapter package, ideally pinned to a version. Mine is just
dbt-[adapter] ~= 1.0

https://dba.stackexchange.com/a/295736
https://dba.stackexchange.com/a/295736

Database connections: profiles.yml
You shouldn’t ever commit secrets in a plain-text file, but you can reference environmental
variables (which we’ll securely define in Step 3).

your_project:

 target: ci

 outputs:

 ci:

 type: postgres

 host: "{{ env_var('DB_CI_HOST') }}"

 port: "{{ env_var('DB_CI_PORT') | int }}"

 user: "{{ env_var('DB_CI_USER') }}"

 password: "{{ env_var('DB_CI_PWD') }}"

 dbname: "{{ env_var('DB_CI_DBNAME') }}"

 schema: "{{ env_var('DB_CI_SCHEMA') }}"

 threads: 16

 keepalives_idle: 0

 prod:

 type: postgres

 host: "{{ env_var('DB_PROD_HOST') }}"

 port: "{{ env_var('DB_PROD_PORT') | int }}"

 user: "{{ env_var('DB_PROD_USER') }}"

 password: "{{ env_var('DB_PROD_PWD') }}"

 dbname: "{{ env_var('DB_PROD_DBNAME') }}"

 schema: "{{ env_var('DB_PROD_SCHEMA') }}"

 threads: 16

 keepalives_idle: 0

Pipeline itself: bitbucket-pipelines.yml
This is where you’ll define the steps that your pipeline will take. In our case, we’ll use the
Bitbucket Pipelines format, but the approach will be similar for other providers.

There are two pipelines we need to configure:

1.​ Continuous Deployment (CD) pipeline, which will deploy and also store the run
artifacts,

2.​ Continuous Integration (CI) pipeline, which will retrieve them for state-aware runs.

The entire file is accessible in a Gist, but we’ll take it step-by-step to explain what we’re
doing and why.

Continuous Deployment: Transform by latest master and keep the artifacts
Each pipeline is a speedrun of setting up the environment and the database connections,
then running what needs to be run. In this case, we also save the artifacts to a place we can

https://gist.github.com/shippy/78c2f5b124b70f31b2cef81c9017c8fd

retrieve them from - here, it’s the Bitbucket Downloads service, but it could just as well be
AWS S3 or another file storage service.

image: python:3.8

pipelines:

 branches:

 main:

 - step:

 name: Deploy to production

 caches:

 - pip

 artifacts: # Save the dbt run artifacts for the next step (upload)

 - target/*.json

 script:

 - pip install -r requirements.txt

 - mkdir ~/.dbt

 - cp .ci/profiles.yml ~/.dbt/profiles.yml

 - dbt deps

 - dbt seed --target prod

 - dbt run --target prod

 - dbt snapshot --target prod

 - step:

 name: Upload artifacts for slim CI runs

 script:

 - pipe: atlassian/bitbucket-upload-file:0.3.2

 variables:

 BITBUCKET_USERNAME: $BITBUCKET_USERNAME

 BITBUCKET_APP_PASSWORD: $BITBUCKET_APP_PASSWORD

 FILENAME: 'target/*.json'

Reading the file over, you can see that we:

1.​ Set the container image to Python 3.8,
2.​ Specify that we want to execute the workflow on each change to the branch called

main (if yours is called something different, you’ll want to change this),
3.​ Specify that this pipeline is a two-step process,
4.​ Specify that in the first step called “Deploy to production”, we want to:

a.​ Use whatever pip cache is available, if any,
b.​ Keep whatever JSON files are generated in this step in target/,
c.​ Run the dbt setup by first installing dbt as defined in requirements.txt, then

adding profiles.yml to the location dbt expects them in, and finally running dbt
deps to install any dbt packages,

d.​ Run dbt seed, run, and snapshot, all with `prod` as specified target.
5.​ Specify that in the first step called “Upload artifacts for slim CI runs”, we want to use

the Bitbucket “pipe” (pre-defined action) to authenticate with environment variables
and upload all files that match the glob `target/*.json`.

In summary, anytime anything is pushed to main, we’ll ensure our production database
reflects the dbt transformation, and we’ve saved the resulting artifacts to defer to.

But wait – what are artifacts and why should I defer to them? dbt artifacts are metadata
of the last run - what models and tests were defined, which ones ran successfully, and which
failed. If a future dbt run is set to defer to these metadata, it means that it can select models
and tests to run based on their state, including and especially their difference from the
reference metadata. See Artifacts, Selection methods: “state”, and Caveats to state
comparison for details.

Slim Continuous Integration: Retrieve the artifacts and do a state-based run
The Slim CI pipeline looks similar to the CD pipeline, with a couple of differences explained
in the code comments. The deferral to artifacts is a key element to making the CI “slim”.

pipelines:

 pull-requests:

 '**': # run on any branch that’s referenced by a pull request

 - step:

 name: Set up and build

 caches:

 - pip

 script:

 # Set up dbt environment + dbt packages. Rather than passing

 # profiles.yml to dbt commands explicitly, we'll store it where dbt

 # expects it:

 - pip install -r requirements.txt

 - mkdir ~/.dbt

 - cp .ci/profiles.yml ~/.dbt/profiles.yml

 - dbt deps

 # The following step downloads dbt artifacts from the Bitbucket

 # Downloads, if available. (They are uploaded there by the CD

 # process -- see "Upload artifacts for slim CI runs" step above.)

 #

 # curl loop ends with "|| true" because we want downstream steps to

 # always run, even if the download fails. Running with "-L" to

 # follow the redirect to S3, -s to suppress output, --fail to avoid

 # outputting files if curl for whatever reason fails and confusing

 # the downstream conditions.

 #

 # ">-" converts newlines into spaces in a multiline YAML entry. This

 # does mean that individual bash commands have to be terminated with

 # a semicolon in order not to conflict with flow keywords (like

 # for-do-done or if-else-fi).

 - >-

https://docs.getdbt.com/reference/artifacts/dbt-artifacts
https://docs.getdbt.com/reference/node-selection/methods#the-state-method
https://docs.getdbt.com/reference/node-selection/state-comparison-caveats
https://docs.getdbt.com/reference/node-selection/state-comparison-caveats

 export

API_ROOT="https://api.bitbucket.org/2.0/repositories/$BITBUCKET_REPO_FULL_NAME/downloa

ds";

 mkdir target-deferred/;

 for file in manifest.json run_results.json; do

 curl -s -L --request GET \

 -u "$BITBUCKET_USERNAME:$BITBUCKET_APP_PASSWORD" \

 --url "$API_ROOT/$file" \

 --fail --output target-deferred/$file;

 done || true

 - >-

 if [-f target-deferred/manifest.json]; then

 export DBT_FLAGS="--defer --state target-deferred/ --select

+state:modified";

 else

 export DBT_FLAGS="";

 fi

 # Finally, run dbt commands with the appropriate flag that depends

 # on whether state deferral is available. (We're skipping `dbt

 # snapshot` because only production role can write to it and it's

 # not set up otherwise.)

 - dbt seed

 - dbt run $DBT_FLAGS

 - dbt test $DBT_FLAGS

In short, we:

1.​ Set up the pipeline trigger condition to trigger on any pull request,
2.​ Set up dbt,
3.​ Retrieve the files from Bitbucket Downloads via API and credentials,
4.​ Set flags for state deferral if the retrieval was successful,
5.​ Run dbt with the default target (which we’d defined in `profiles.yml` as `ci`).

Step 3: Bitbucket environment preparation
Finally, we need to make sure that all the steps that require authentication succeed:

1.​ Database authentication, and
2.​ Bitbucket Downloads authentication.

Database authentication
1.​ Determine the values of all of the variables in .ci/profiles.yml

(DB_{CI,PROD}_{HOST,PORT,USER,PWD,DBNAME,SCHEMA})

2.​ Go to Repository > Repository Settings > Repository Variables and define them
there, making sure to store any confidential values as “Secured”.

Bitbucket Downloads authentication
1.​ Go to Personal Settings > App Passwords and create a Bitbucket App Password with

scope repository:write.

2.​ Go to Repository > Repository Settings > Repository Variables and define the

following:
a.​ BITBUCKET_USERNAME, which is not your sign-up e-mail, but rather the

username found by clicking your avatar in the top left > Personal settings >
Account settings page, under Bitbucket Profile Settings.

b.​ BITBUCKET_APP_PASSWORD, making sure to store it as “Secured”

Enable Bitbucket Pipelines
Lastly, under Repository > Repository Settings > Pipelines Settings, check “Enable
Pipelines”.

Step 4: Test
You’re all done! Now it’s time to test that things work:

1.​ Push a change to your main branch. This should trigger a Pipeline. Check that it’s
successful.

2.​ File a Pull Request with a change to a single model / addition of a single test. Check
that only that model/test ran.

Conclusion
It’s important to remember that CI/CD is a convenience, not a panacea. You must still devise
the model logic and determine the appropriate tests. Some things it can do, though: catch
some mistakes early, make sure that the database always reflects the code, and decrease
the friction in collaboration. By automating the steps that should always be taken, it frees you
up to think about the unusual steps required (e.g., do your changes to incremental models
require an additional deployment with --full-refresh?) and reduces the amount of review
that others’ actions necessitate.

Plus, it’s a good time, and it’s fun to watch the test lights turn green. Ding!

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/configuring-incremental-models

	Slim CI/CD in Bitbucket Pipelines
	Steps
	Step 1: Database prep
	Step 2: Repository prep
	Step 3: Environment prep
	Step 4: Test

	Attached files
	requirements.txt
	bitbucket-pipelines.yml
	.ci/profiles.yml

	Related links

	Article: Slim CI/CD in Bitbucket Pipelines without dbt Cloud
	Steps required
	Step 1: Database preparation
	Step 2: Repository preparation
	Pipeline environment: requirements.txt
	Database connections: profiles.yml
	Pipeline itself: bitbucket-pipelines.yml
	Continuous Deployment: Transform by latest master and keep the artifacts
	Slim Continuous Integration: Retrieve the artifacts and do a state-based run

	Step 3: Bitbucket environment preparation
	Database authentication
	Bitbucket Downloads authentication
	Enable Bitbucket Pipelines

	Step 4: Test
	Conclusion

