	1.1 Exponent Rules	
Date:		
I can: use exponent rules to simplif	y expressions	
The basic layout of an exponent is, χ^2	for example:	
What does an exponent mean?		
Ex. 2 ³ =	Ex. $(-4)^4 =$	Ex. 11 ² =
How are these all pronounced?		
What if we were given questions th Ex. $(2^3)(2^4)$	nat look like this? Ex. $(-3)^2(-3)^1$	Ex. x ⁻² x ⁶
We can generalize to create the Pro	oduct Rule:	
What if we switched to dividing exp Ex. $2^5 \div 2^2$	ponents? What would change? Ex. $3^9 \div 3^{11}$	Ex. $(-4)^3 \div (-4)^3$
We can generalize to create the Qu	otient Rule:	
Finally, what if we switched to an e Ex. (2 ⁵) ²	xponent of an exponent? Ex. [(-4)³]⁴	Ex. (11 ³) ⁰
We can generalize to create the Por	wer of a Power Rule:	
What all of these mini-examples ha	ave in common?	

Ex.
$$\frac{-32x^2y^8 - 16x^2y^4 + 8x^2y}{8x^2y}$$

Ex. $(-2x^2y^3)(3x^3y^4)$

Ex.
$$\frac{6x^3 + 12x^2 - 18x}{-3x}$$

Ex. $(x^5y)(4x^2y^4)$

Ex. $(3x^2y^2)^3$ $9x^5y^7$ Evaluate the expression when x = 2 and y = -1. Ex. $(-2x^2y^3)(3x^3y^4)$

Ex. $(x^5y)(4x^2y^4)$

Ex. $(3x^2y^2)^3$ $9x^5y^7$

Ex. $\frac{-33x^2y^{10} - 22xy^4}{-11xy}$