
Object-Oriented Software Engineering Term Projects
Spring 2018
Instructors: Uğur Doğrusöz and Eray Tüzün

As the course project, you are to develop a software system to solve a problem as described below. You
are to work in groups of 4 (3-5) people as assigned, and complete your projects in two iterations/rounds.​
The main objectives of the project are to gain experience in doing teamwork through all phases of software
engineering and practicing object-oriented software development tools and techniques.​
You are to implement your system in Java (unless all group members agree on using C++ or some other
programming language with reasonable support for object-oriented programming) and extensively make
use of GitHub project hosting platform for maintaining all there is to your project from source code to
documents to issues.​
The internal and exposed documentation of the system are essential.

Analysis
Analysis Document of a project, also known as a Software Requirements Specification (SRS), is
produced as a result of the analysis of the system to be developed. The requirements provided by the
customer are analyzed carefully and this document is produced as a result of a thorough analysis of the
system at hand. In a sense, this document is a contract between the developer (“you”) and the
user/customer (“us” in this case).​
Once you feel your analysis document is complete, you may begin your design. This phase is perhaps the
most crucial of all and should be dedicated sufficient time. A project without a proper design might actually
receive a failing grade even if its implementation is completely finished.​
There can be many different ways in which to organize an Analysis document; the key point is being able to
convey the model produced as a result of the analysis as clearly and completely as possible. One example
organization for an object-oriented software system is as follows :​
1.​ Introduction​
2.​ Overview​
3.​ Functional requirements

3.1​ Additional requirements (iteration 2 only)​
4.​ Nonfunctional requirements

4.1​ Additional requirements (iteration 2 only)​
5.​ System models​
​ 5.1.​ Use case model​
​ 5.2.​ Dynamic models​
​ 5.3.​ Object and class model​
​ 5.4.​ User interface - navigational paths and screen mock-ups
6.​ Improvement summary (iteration 2 only)
7.​ Glossary & references

Design
Design Document is mainly a non-exposed, internal document, and is a means for communicating ideas
between different parts of a development team during the design phase as well as for proper maintenance
of a software system. Considering the fact that people responsible for maintenance might not be the same
people who have designed and implemented the software, it should be self-explanatory and complete. This

means just about anything used during analysis and design such as reasoning and rationale of key design
decisions, design procedures (e.g. top-down decomposition of the system and specific architectural style
used), and UML diagrams should be part of this document. Proper commenting of source code, of course,
is an essential part of internal documentation.​
Again there is no single way to organize such a report, a sample follows:​
1.​ Introduction​
​ 1.1 Purpose of the system​
​ 1.2 Design goals​
2.​ High-level software architecture​
​ 2.1 Subsystem decomposition​
​ 2.2 Hardware/software mapping​
​ 2.3 Persistent data management​
​ 2.4 Access control and security​
​ 2.5 Boundary conditions​
3.​ Subsystem services​
4.​ Low-level design​
​ 4.1 Object design trade-offs​
​ 4.2 Final object design​
​ 4.3 Packages​
​ 4.4 Class Interfaces​
5.​ Improvement summary (iteration 2 only)
6.​ Glossary & references

Implementation
Final Report is a document that discusses how the implementation went and whether or not any major
changes to the design had to be made due to complications during the implementation. This report is to
include some Exposed Documentation of the software system (could be an Appendix), corresponding to a
User’s Guide, and should provide everything that is needed to install and use the software properly. The
document should also state the status of the implementation (i.e. any parts that are not implemented or are
incomplete).
Again there is no single way to organize such a report, a sample follows:​
1.​ Introduction: State where you stand at the moment with the implementation
2.​ Design changes: Describe any changes in the design and present high and/or level level design
diagrams if needed
3.​ Lessons learnt: Tell us about your experience​
4.​ User’s Guide
​ 4.1 System requirements & installation​
​ 4.2 How to use

Project Descriptions (A Rough Requirements Document)
We will let you decide your own projects but you need to let us know what particular project you have
chosen, by the specified date. The project descriptions can be short and the details of the systems are left
to your desire and imagination. Discussion with the TA or the instructor about your project is highly
recommended.​
Whenever possible, we ask you to avoid having to learn new technologies, complex algorithms and alike.
For example, we discourage you to develop games with complicated networking needs, since having to
learn networking can be quite time-consuming and would have little contribution to your OO software
development skills. Similarly, a project with an advanced Artificial Intelligence or Graphics component is not
recommended. Since this is your first project, where you should apply high and low level architectural styles

and design patterns, you should not use a library or a framework (e.g. a physics or game engine) that
forces a particular design on your project.​
If allowed by the owner, you may use ideas, images, screens, etc. from existing implementations
but you must credit them by properly citing them. However, you are not allowed to lift source code
from any such implementation! Should you need to make re-use of existing methods or relatively
short code segments (cut-and-paste) longer than a few lines or make use of a 3rd party library, you
must first get our consent!

Iterative Development
You are going to perform your development activities in 2 rounds. The first iteration will cover most basic
requirements of your software using techniques and tools learnt thus far. The second and final iteration is
to:

●​ Improve any problems in your design and implementation
●​ Add more advanced use cases (required)
●​ Use all techniques and tools learnt in this course

Use of Tools
You are required to use GitHub and UML during all phases of software development. In fact, we will
extensively make use of GitHub history to evaluate individual contributions.
You are to create an additional branch for your project named “unstable”, and perform your regular
documentation and coding activities on this branch. Please make sure to have a directory named “doc”
containing your reports and other kind of documentation, and a directory named “src” containing your
source code, which in turn should be organized with respect to your architecture / high level components.
When you’re ready to wrap up an iteration, you are to merge what you have on unstable branch to the
master (default) branch and prepare a “release” (version 1 and version 2) from the master branch before
the deadline for that iteration. Each such release will be considered as the final product of that iteration, and
evaluation will be based on these releases as opposed to what’s currently in master or unstable branch.

Working as a Group
In order for a successful teamwork, regular meetings, especially during the initial phases of the
development including design, are extremely important. Later on during the development, however, the
tasks could be split for each person to work individually on. For a better organization and effective
meetings, you are required to keep meeting logs (see this template)​
You are strongly encouraged to express any serious concerns you might have in working with
other(s) in your group to your instructor. And please do not wait till the end of the semester!
Remember that each individual is equally responsible for all deliverables (documents, code, etc.)

Grading
Your grades will be based on your individual performance (which will be also dependent on a mandatory
assessment of your performance by others and yourself) as well as the overall quality of the software
developed. We suggest you evaluate yourself and your friends based on their contribution to the project
and how cooperative they have been in a team environment (e.g. how easy it was to work with them and
communicate ideas with them). The peer grades submitted to the instructor will be kept strictly
confidential! The difficulty of the task undertaken will play a role in grading as well (you should be careful
in the amount of tasks you undertake when you write your analysis report; try not to over or under-estimate
the amount of effort needed to get full credit). We will give you feedback on this based on your first iteration
results.​

https://docs.google.com/document/d/1XxDDvJ4Cx0lm0CSmvt_nVvrKJOw4LQUtWw9fJdOv25E/edit?usp=sharing

Once again, a project without a proper design might actually receive a failing grade even if its
implementation is completely finished. Similarly, a project analyzed and designed properly but not
implemented completely will likely have a passing grade.​
We realize it is difficult to work in a group environment to get things done. We also realize that it’s more
difficult to measure the contribution and performance of individuals in such an environment. However, such
exercises are crucial in preparing you for real life projects and we’ll be as helpful as possible for the
success of the projects and as generous as possible in grading.

Submission and Deadlines
You are to host and submit all there is to your project and conduct your development through GitHub as
instructed. All milestones and due dates are as provided on the course Web page.​
Once again the major objective of this project is to have you gain experience in doing teamwork; so
try to be a team player, and have a positive and constructive attitude towards your teammates; one
must learn to tolerate the differences in every aspect of life for success. Good luck and feel free to
ask us any questions you might have regarding the project or the object-oriented software
development concepts in general.​

	Object-Oriented Software Engineering Term Projects Spring 2018
	Analysis
	Design
	Implementation
	Project Descriptions (A Rough Requirements Document)
	Iterative Development
	Use of Tools
	Working as a Group
	Grading
	Submission and Deadlines

