Conversation

A powerful conversation system that allows you to make complex
dialogues without even a single line of code.

V1.2.1

Incomplete documentation parts will be improved over time.
Get the most up to date documentation by clicking here.
Remember you can hover over fields in the “Inspector” window in Unity’s editor to read
tooltip explanations of each field.
e If you have any questions or need assistance email support at

intuitivegamingsolutions@gmail.com.

Table of Contents

. Table Of Contents
How to: Import the Package into a Unity Project

. Getting Started
3.a. Creating your first DialogqueGraph

3.b. Creating your first Chattable
3.c. Creating your first ChatActivator
3.d. Starting your first Conversation
. The DialogueGraph
. The Chattable Component
5.a. Chattable Component
- The core component for all Chattable things.
5.b. The ChattableEvents Component
- For subscribing to editor events that are invoked when given Chat nodes or
responses are reached/given by a ChatActivator during a conversation with a
Chattable.
5.c. The ChattableBranchConditions Component
- For defining Unity Event style drag-and-drop conditions in the Inspector for
Branch nodes in the related Chattable component’s dialogue graph.
5.d. The ChattableResponseConditions Component
- For defining Unity Event style drag-and-drop conditions in the Inspector for given
response nodes to appear.
5.e. The ChattablePropertyModifier Component
- For having properties automatically modified when chat (or response) events
happen.
5.f. The ChattableActionEvents Component
- For subscribing to editor events that are invoked when a ChatActivator reaches a
given Event node during a conversation with the related Chattable component.

https://docs.google.com/document/d/1SNuC3shm3KSWDbJbaZ6iet7bugsn_EiXb78ySAos1VA/edit?usp=sharing
mailto:intuitivegamingsolutions@gmail.com

6. The ChatActivator Component
6.a. ChatActivator

- The core component for all things that are capable of chatting with a Chattable.
6.b. The ChatHistory Component
- For allowing a ChatActivator to go back through a conversation (or multiple
conversations).
6.c The SubstituteText Component

6.d Custom Chat & Response Text Formatting
7. The Chat Node

7.a. Chat Node
- The main node for chat entries.
7.b. Chat Responses
- Possible responses to a chat node. (See ChatResponseConditions to require conditions to
display certain responses.)
8. The EndChat Node
- Aninput-only node that marks the end of a chat.
9. The Event Node
9.a. Event Node
- Invoke scripted actions and/or ChattableActionEvents at the appropriate time in a
conversation using the node graph.
The Event.Action Abstract ClI ripted Event N
- The type all scripted Event node actions must inherit from.
10. The Branch Node
10.a. Branch Node
- Conditional branch node with 1 input and 2 outputs (pass condition, fail
condition).
10.b. The Branch.Callback Abstract Class
- (Scripted Boolean-related Branch Conditions)
10.c. The Branch.ValueCallback Abstract Class
- (Scripted Value-related Branch Conditions)
11. The WaitForSignal Node
11.a WaitForSignal Node
11.b Setting up click-through chat Button
12. The RandomBranch Node
13. Extra
13.a. The StartChatOnTrigger Component
14. Component Overview
15. FAQ
NOTE: See ‘API Reference.pdf’ if you are looking for source code documentation.

How to: Import the Package into a Unity Project

There are 2 ways to import the package.
a. (Recommended) Using the Unity Editor ‘Package Manager’.
i. Open the Windows—Package Manager using the Unity editor toolbar.
ii. Inthe upper-left corner of the Package Manager window select ‘Packages: My
Assets’.
iii. Search for ‘Conversation™ in the list or use the search bar in the window.
iv. Select the asset in the package manager, select ‘Download’.
v. After the package has finished downloading click ‘Import’ to import it into the
project.
b. Importing Conversation.unitypackage
i. Using the Unity Editor’s toolbar select Assets—Import Package
ii. Inthe file explorer that opens navigate to Conversation.unitypackage
iii. Double click the package and import it.

Getting Started

(Video Walkthrough - Youtube)

3.a. Creating your first DialogueGraph

1.

In the “Project” pane in the bottom of the Unity Editor right-click on empty space and
select: Create—Conversation—DialogueGraph. This will create a new dialogue graph,
name it whatever you would like.

s Project B console © Animation

[Assets
- e T

@ Conversation sl Dol

2. Open your newly created DialogueGraph (it may have automatically opened), right click

anywhere in the Node Graph Editor and select “Chat” to create your starting chat node.

Chat (0)
Audio Settings
io Volume
Mone [Audio Clip)
Branch Chat Settings
Chat Text
End Chat

Event

Responses

Paste

Preferences Listis Empty

3. Add whatever responses you want to your starting Chat node.

a. For this example we are going to add two response options, one will continue to
another Chat node and the other will end the chat immediately. Note the
connections in the screenshot below.

https://www.youtube.com/watch?v=b8AaVsbzoxI

Chat (1)

Chat (0)

End Chat

4. Finally add your EndChat nodes as shown in the screenshot above. Remember

conversations end when the EndChat node is triggered, make sure to connect the
outputs you want to end the chat on to an EndChat node. And you’re done! You've
made your first DialogueGraph that defines a conversation.

3.b. Creating your first Chattable

1.

Create a GameObiject in your scene either using the toolbar or by right clicking inside of
the “Hierarchy” panel..

onversation_Showcase01*
] chattable

2. Add a Chattable component using the ‘Add Component” button in the “Inspector” window

to your newly created (or existing) GameObject from step 1.

Chattable (Script)

Settings

Reference the DialogueGraph you want to be used in conversations with this new
Chattable. You've now created your first Chattable! If you want, take a minute to look
over all the events provided by this component and/or auxiliary components for the
editor-driven workflow such as ChattableEvents, ChattableActionEvents,
ChattableResponseConditions, ChattablePropertyModifier, and ChattableBranchConditions.
a. For continuing the ‘Getting Started” example we will use the DialogueGraph we
created in step 3.a.

3.c. Creating your first ChatActivator

1. Create a GameObject in your scene either using the toolbar or by right clicking inside of
the “Hierarchy” panel.

= Hierarchy

+1|r

L] chat
2. Add a ChatActivator component to your newly created (or existing) GameObject from
step 1.

Chat Activator (Script)

Add Component

3. (Optional) Add a ChatHistory component to allow for ‘go back’ functionality in this
ChatActivator’'s conversations.

+ Chat History (Script)

Settings

4. Add a ChatPanelManager component, or if you are using a custom one add that to
control when to open the chat panel Ul. If you are using the ChatPanelManager
component make sure to set your ‘Chat Panel Prefab’ reference, this is in the default
demo set to the provided “SampleChatPanel01” prefab.. You’ve now finished creating
your first ChatActivator!

n + Chat Panel Manager (Script)

3.d. Starting your first Conversation

1. You may either use the public method ‘ChatActivator.StartChat(Chattable pChattable)’,
or a component such as the provided demo component InvokeEventOnStart to initiate a
conversation. (Also see StartChatOnTrigger component)

2. Ensure your scene has a Canvas in it. If not, create one via the Editor toolbar using
GameObject—Ul—Canvas.

3. For this example we will add a InvokeEventOnStart component to our ‘chatactivator’
GameObject from step 3.c and use that to start a conversation between our
‘chatactivator’ from step 3.c and our ‘chattable’ from step 3.b.

a. Add the InvokeEventOnStart component.

Chat Activ

Click the “+” button in the bottom right of the ‘Triggered’ event in the
InvokeEventOnStart component’s “Inspector”.

In the newly added event entry’s object reference box drag the ‘chatactivator’
GameObject from the hierarchy pane into the reference box.

ﬂ ¥ Invoke Event On Start (Script)

Runtime Only = Mo Function

In the ‘No Function” dropdown select the ChatActivator—StartChat(Chattable).
Now in the argument reference box drag the ‘chattable’ game object created in
step 3.b. You are done and your conversation will now start when you click
“Play”!

Hey buddy!

Good to see you.

You 100, bye.

The above are screenshots from the conversation we created in the "Getting Started"
section!

The DialogueGraph

A screenshot of the dialogue graph from the Showcase01 demo.

- The DialogueGraph is where you lay out your conversations using the easy-to-use node
graph editor. Simply connect output nodes to input nodes starting from a ‘Starting Chat
Node'.

- Itis important to understand the workflow for scripted conditions, events, and
actions versus the editor-event style workflow. All condition and action references
found directly in the DialogueGraph are related to the scripted workflow whereas
conditions, events, and actions defined in components such as ChattableEvents,
ChattableActionEvents, ChattableResponseConditions, and more are related to the editor
event driven workflow.

- Scripted conditions, events, and actions apply to any conversation involving a
given DialogueGraph.

- Event-driven, component style workflow conditions, events, and actions only
apply to the Chattable component (or ChatActivator component) the relevant
components are attached to.

- The bright red node on the far left is the “Starting Chat Node”, any Chat node can be
made into a starting chat node by right clicking it and selecting the option. If there are no
valid Chat nodes in your dialogue graph the first created Chat node will automatically be

made the starting node. This node is where conversations using this dialogue graph
will begin.
- You may connect an output node to the starting chat node’s input if you want to
restart the conversation after the output node is triggered.
The green nodes are all of the Chat nodes that are not starting nodes.
- Chat nodes generally have 1 input and an output for each possible response. In
the case where a Chat node has no responses it simply has 1 output node.
- Chat nodes with registered responses trigger the output node of the response
that was selected by the ChatActivator during a conversation.
- Chat nodes without registered responses trigger the ‘output’ node immediately.
- Chat node events can be defined in the DialogueGraph for scripted workflows or
in the ChattableEvents component.
The blue nodes are Branch nodes; they have 1 input and 2 outputs.
- The ‘pass’ output is triggered when the Branch'’s conditions are met.
- The *fail’ output is triggered when the Branch’s conditions are not met.
- Branch conditions can be defined in the DialogueGraph for scripted workflows or
in the ChattableBranchConditions component.
The nodes are Event nodes that when triggered invoke scripted actions and/or
ChattableActionEvents whenever They have 1 input and 1 output.
- Event actions can be defined in the DialogueGraph for scripted workflows or in
the ChattableActionEvents component.
The red nodes are EndChat nodes, they have only 1 input and will end a conversation
immediately when triggered. You can place as many EndChat nodes in the
DialogueGraph as you want, or connect multiple outputs to a single EndChat node’s
input.

10

The Chattable Component

5.a. Chattable Component

- The core component of all Chattable things.
TODO

5.b. The ChattableEvents Component
TODO

5.c. The ChattableBranchConditions Component
TODO

5.d. The ChattableResponseConditions Component
TODO

5.e. The ChattablePropertyModifier Component

- This component can be used to have Chat nodes and responses modify values without
having to write any code. Furthermore this component is integrated with the ChatHistory
component so property modifications are undone as you go back in your chat history
ensuring players in your game cannot abuse the ‘go back’ feature to increment their
stats. This setting is toggle-able in the ChatHistory component.

TODO

5.f. The ChattableActionEvents Component

- The ChattableActionEvents component is intended to be attached to the same
GameObject as a Chattable component. This component’s inspector window
automatically populates with the Event nodes from the related Chattable’s dialogue
graph and allows you to subscribe to Unity Editor Events that are invoked when the
desired Event node is reached by a ChatActivator during a conversation.

TODO

11

The ChatActivator Component

6.a. ChatActivator

The ChatActivator is a core component responsible for starting conversations and
handling progression through them. A conversation begins when a ChatActivator starts a
chat with a Chattable component via ChatActivator.StartChat(Chattable pChattable).

6.b. The ChatHistory Component

The ChatHistory component keeps a record of all past chat nodes in a ChatActivator's
history. It clears history automatically at certain times, or not at all based on the 'clear
history' setting it is using.

The ChatHistory component allows a ChatActivator to go back through to the beginning
of a conversation, or in the case of a global 'go back' button like setup in the demo
Showcase01 through even past conversations. How far back a ChatActivator can go is
determined by the 'clear history' setting.

This component will even roll back modifications made using a ChatPropertyModifier
component, so things like stat increases or decreases will be reverted when the player
'goes back'.

The ChatHistory component should be attached to the same object as the ChatActivator
whose history it is managing.

6.c. The SubstituteText Component

The SubstituteText component simply lets you specify tag names and references to
integers, floats, or string values that will be used to replace the tag before chat or
response text is displayed.

In theory you could use multiply Substitute Text components and change the reference to
ChatActivator.subtitutor directly (or via the ChatActivator.SetSubstitutor(Substitute Text)
method) to have the same tag substituted for different values in different situations.
USAGE SYNTAX: <$tagname> - where the entire tag becomes replaced if the
ChatActivator involved in the conversation has a valid replacement defined for tagname.
See the screenshots below for more detail.

12

Chat (0)

Audio Settings

folume

Audio Clip Mane (Audio Clip)

Chat Settings

splayer_name_full=!

PONSESs

List is Empty

Substitute Text (Script)

Replace Entries

plaver_name_full

Above screenshots show example usage of the substitute text tag replacement system.

DIRECT REPLACEMENT: Note that if there is no reference object specified, no
'Replace With Object' field specified in the SubstituteText component the 'Replace With'
text box that is shown allows you to enter a direct string replacement for the tag instead

of referencing a variable.
Substitute Text (Script)

Replace Entries

Above screenshot shows example usage of the direct-string substitute text tag replacement system.

6.d. Custom Chat & Response Text Formatting

Before chat or response text is displayed it is intended that
ChatActivator.FormatText(string) first be invoked on the text that is to be displayed, this
gives an opportunity for substitutions or modifications to be made before these texts are
displayed.

For basic substitutions it is recommended to use the SubstituteText component.

13

Two events are invoked during a call to ChatActivator.FormatText(string):
1. ChatActivator.PreTextFormatted(ref string pText)
- Allows you to modify pText via a reference before formatting is performed
by things like the SubstituteText component.
2. ChatActivator.PostTextFormatted(ref string pText)
- Allows you to modify pText via a reference after formatting is performed
by things like the SubstituteText component.

7.a. Chat Node
TODO

7.b. Chat Responses
TODO

The Chat Node

14

15

The EndChat Node

- Why does the EndChat node exist?

Although we could automatically detect the end of a conversation in the end it
was decided the EndChat node was the best solution. To mark the end of a
conversation you simply add an EndChat node in your conversation dialogue
graph and link it like you would any other node.

By explicitly linking the EndChat node you, the developer, are able to guarantee
the chat does not end till you want it to end.

The Event Node

9.a. Event Node
TODO

9.b. The Event.Action Abstract Class (Scripted Event Nodes)
TODO

16

The Branch Node

10.a. Branch Node
TODO

10.b. The Branch.Callback Abstract Class

(Scripted Boolean-related Branch Conditions)

TODO

10.c. The Branch.ValueCallback Abstract Class

(Scripted Value-related Branch Conditions)

TODO

17

11.a.

11.b.

18

The WaitForSignal Node

WaitForSignal Node

The WaitForSignal node holds up a chat, effectively pausing the conversation once the
node is triggered.
To resume the conversation by triggering the WaitForSignal node's outputs
WaitForSignal.Signal(ChatActivator pActivator) must be invoked.
There are many convenient options for resuming a conversation such as:
- ChatActivator.ContinueChat()
There are two Unity Events relevant to a ChatActivator involving WaitForSignal nodes:
1. ChatActivator.WaitNodeReached - Invoked when a wait node is reached.
2. ChatActivator.WaitNodeLeft - Invoked when a wait node is left.

Setting up click-through chat Button

TODO (for now see the relevant demo scene)

The RandomBranch Node

TODO (for now see the click-through demo scene)

19

13.a.

20

Extras

The StartChatOnTrigger Component

The StartChatOnTrigger component is intended to be attached to a Unity trigger and will
start a chat when a ChatActivator triggers the Chattable associated with the
StartChatOnTrigger component.

Youtube Tutorial: https://youtu.be/Y2_kOgbNgms
WebGL Demo

https://youtu.be/Y2_k0gbNqms
https://intuitivegamingsolutions.com/conversations_trigger-1-0-0/

21

Component Overview

Want to add Branch conditions to a single Chattable only? Or simply add Branch
conditions without code?
Check out the powerful ChattableBranchConditions component!

e The ChattableBranchConditions component is attached to the same GameObject as a
Chattable.

e The ChattableBranchConditions component automatically (re)generates a list of
boolean, value, and compare conditions that let you define conditions for a Branch node
directly from this component with no code by dragging and dropping GameObijects or
Components and selecting relevant fields to compare from a dropdown.

e Alternatively there is a powerful scripting API that allows you to set conditions via a C#
script.

Want to add response conditions so a response only shows if some conditions are met?
Check out the powerful ChattableResponseConditions component!

e The ChattableResponseConditions component is attached to the same GameObject as
a Chattable.

e The ChattableResponseConditions component automatically (re)generates a list of
boolean value, and compare conditions that let you define conditions for a Response
node directly from this component with no code by dragging and dropping GameObjects
or Components and selecting relevant fields to compare from a dropdown.

e Alternatively there is a powerful scripting API that allows you to set conditions via a C#
script.

Want to add Chat and Response events to a single Chattable Only? or simply add events
without code?
Check out the dynamic ChattableEvents component!

e The ChattableEvents component is attached to the same GameObject as a Chattable.

e The ChattableEvents component automatically (re)generates a list of Unity editor events
you can set up in the editor for all Chat and Response nodes in the related Chattable
component's dialogue graph. This lets you fire events when any Chat node is reached or
response is selected during a conversation with a Chattable directly from the inspector
window.

e Uses a workflow similar to 'Unity Events' to allow you to drag and drop GameObijects to
reference relevant public fields in them or their components.

e Alternatively there is a powerful scripting API provided that lets you fire script events in
C#.

Want to have editor events automatically invoked when Event nodes are reached during
a conversation without writing a single line of code?

22

Check out the ChattableActionEvents component!

e This component is attached to the same GameObject as a Chattable.

e ChattableActionEvents components automatically regenerate a list of Event nodes in the
related Chattable's dialogue graph and provide you with Unity Editor Events that are
invoked when the desired Event node is reached by a ChatActivator during a
conversation.

Want a chat system that allows you to 'go back'?
Check out the ChatHistory component!

e Conversations comes with a ChatHistory component that goes on the same GameObject
as your ChatActivator. This component allows a ChatActivator to go back through a
conversation, the demo Ul shows off this feature.

e Not only can you 'go back'’, the ChatHistory component stores a record of all properties
modified by the chat system's ChatPropertyModifier component. This makes it so when
a player 'goes back' any stat increases or property changes made by the property
modifier will be automatically undone. (Undo stat increases or decreases)

e You can choose when chat history is cleared allowing you to decide if you want players
to be able to go back to the start of a conversation or into past conversations.

Modify public booleans, floats, ints, and doubles via the ChattablePropertyModifier
component. Using a workflow similar to 'Unity Events' Conversations lets you click and drag
GameObjects and select relevant public fields (or properties) from them or their components
that will be modified however you (set, add, subtract, multiply, etc) want on any chat node or
response you want. Not only does this let you modify a player's stats without any code on chat
events, it also registers modified properties with the ChatHistory system and undoes stat
(property) changes when you 'go back' through conversation history. This component is
attached to the same GameObject as a Chattable.

The WaitForSignal node lets you manually pause & continue conversations using Unity
Events. This is useful for easily implementing things such as click-through response-less chat
nodes. The ChatActivator component includes a public method, ChatActivator.ContinueChat(),
that can be manually invoked or invoked through Unity Events (e.g: Button.onClick) in the editor.
See the "The WaitForSignal Node" documentation for more information and a walkthrough
video.

23

The SkipChat component lets you allow users to automatically skip wait nodes, it even comes
with various options to interrupt the skipping.

Many more chat node types! Like random nodes and more.

Powerful tag-based text substitution for chat and response texts. Conversations includes a
powerful component, SubstituteText, which allows you to automatically replace <$tagname>
style tags in chat and response texts with bool, int, float, double, or string values easily by
clicking-and-dragging in the editor. C# events are also provided to allow you to implement
custom substitutions via code before or after SubstituteText component substitutions are made.
(See documentation on the Substitute Text component for more detail.)

24

FAQ
(Frequently Asked Questions)

. After compiling the demo | get errors when the StoryManager attempts to load a new
story.

a. Don’t worry this is easy to fix! This occurs when you have forgotten to add the
story scenes to the build list for your game. To do this goto File—Build Settings
and add all story scenes to the build scenes list. It works in the editor because
the StoryManager uses #if conditions to load the scene using editor-only
methods.

Using the new input system an error is spammed when | start the demo scene.

a. Another easy fix! This happens when a scene (like the demo scene) is using an
EventSystem setup for the old input system. Unity has a button to automatically
fix this, simply select “EventSystem” in the scene hierarchy and click “Convert to
New InputSystem”.

Why are certain components such as ChatPanelController or SkipChat for example not
included in the API Reference.pdf file?

a. This is because these components, or any components included as raw source
code are not considered to be core components for Conversations.

b. These components are not required to exist for the core codebase of
Conversations to function and can be replaced with customized versions of them.

c. You will notice that all of these source code files are fully documented however
and if you wish to generate a custom pdf API reference for just your game-files
you can easily do so with a program like Doxywizard.

	Conversation
	V 1.2.1
	Table of Contents
	How to: Import the Package into a Unity Project
	Getting Started
	3.a. Creating your first DialogueGraph
	3.b. Creating your first Chattable
	3.c. Creating your first ChatActivator
	3.d. Starting your first Conversation

	The DialogueGraph
	The Chattable Component
	5.a. Chattable Component
	5.b. The ChattableEvents Component
	5.c. The ChattableBranchConditions Component
	5.d. The ChattableResponseConditions Component
	5.e. The ChattablePropertyModifier Component
	5.f. The ChattableActionEvents Component

	
	The ChatActivator Component
	6.a. ChatActivator
	6.b. The ChatHistory Component
	6.c. The SubstituteText Component
	6.d. Custom Chat & Response Text Formatting

	The Chat Node
	7.a. Chat Node
	7.b. Chat Responses

	The EndChat Node
	The Event Node
	9.a. Event Node
	9.b. The Event.Action Abstract Class (Scripted Event Nodes)

	The Branch Node
	10.a. Branch Node
	10.b. The Branch.Callback Abstract Class
	10.c. The Branch.ValueCallback Abstract Class

	The WaitForSignal Node
	11.a. WaitForSignal Node
	11.b. Setting up click-through chat Button
	The RandomBranch Node
	Extras
	13.a. The StartChatOnTrigger Component
	Component Overview
	FAQ

