

Duck array compatibility meeting

Attendees:

●​ Tom Nicholas (@TomNicholas) - he/him - Columbia University - xarray dev team +
dask/pint/pangeo user

●​ Jon Thielen (@jthielen) - MetPy dev team
●​ Justus Magin (@keewis) - xarray dev team
●​ Simon Cross (@hodgestar) - QuTiP dev team
●​ Simon Heybrock (@simonheybrock) - scipp dev team
●​ Hameer Abbasi (@hameerabbasi) - PyData/Sparse, uarray/unumpy/udiff
●​ Ralf Gommers (@rgommers) - Quansight/NumPy/SciPy/PyTorch / array API standard
●​ Peter Andreas Entschev (@pentschev) - Dask/CuPy
●​ Benjamin Zaitlen (@quasiben) - Dask/RAPIDS
●​ Stephan Hoyer (@shoyer) - Xarray/NumPy/JAX
●​ Nick Becker (@beckernick) - RAPIDS/Dask (interested observer)
●​ Greg Lucas (@greglucas) - Numpy/MaskedArray, interested observer
●​ Guido Imperiale (@crusaderky) - xarray, dask dev team
●​ Jacob Tomlinson (@jacobtomlinson) - he/him - NVIDIA - RAPIDS/Dask
●​ Leo Fang (@leofang) - CuPy
●​ John Kirkham (@jakirkham) - Dask/RAPIDS
●​ Andrew McNichols (@amcnicho) - National Radio Astronomy Observatory
●​ Jim Pivarski (@jpivarski) - Princeton, IRIS-HEP

Agenda:

●​ Brief intros:
○​ Name / pronouns
○​ Institute / company
○​ Library(ies) you work on

●​ Orders of business:
○​ 1-hour official meeting, but can stay for discussion afterwards
○​ Repo/NEP/etc. for standardizing wrapping order and other future decisions
○​ Note-taking in this doc (by Tom) but ideally record the meeting so it can be done

afterwards
○​ Moderation by Tom when necessary, to keep it focused. Unfinished discussions can

continue afterwards or in a dedicated repo
●​ Definition/minimal API of a duck array

○​ Xarray been defining duck array via array protocols (__array_ufunc__ &
__array_function__) + possessing dtype + shape

○​ Array API Standard: https://data-apis.org/array-api/latest/ and NEP 47:
https://numpy.org/neps/nep-0047-array-api-standard.html

■​ Not incompatible

https://data-apis.org/array-api/latest/
https://numpy.org/neps/nep-0047-array-api-standard.html

■​ Already defines minimum subset of API
○​ See Also: https://github.com/pydata/xarray/issues/5648#issuecomment-890310954

●​ Which libraries should wrap which other libraries
○​ https://github.com/dask/dask/issues/6635

●​ Consistency of type deferral (e.g., between array functions, ufuncs, module functions,
construction, and binary ops)

○​ https://github.com/pydata/xarray/issues/3950
○​ Partially: https://github.com/pydata/xarray/issues/5559

●​ Nested array reprs (both short and full)
○​ https://github.com/dask/dask/issues/5329
○​ https://github.com/dask/dask/issues/6637
○​ https://github.com/pydata/xarray/issues/4324

●​ Addition / removal of layers in a nested duck array
○​ Partially: https://github.com/pydata/xarray/issues/3245
○​ Partially: https://github.com/pydata/xarray/pull/5568

●​ Best practices for "carrying through" type-specific operations to wrapped types
○​ https://github.com/dask/dask/issues/6636
○​ Partially: https://github.com/dask/dask/issues/6385

Notes:

●​ Nested Duck Array Definition (Justus Magin):
○​ Some properties + Protocols (__array_function__ + __array_ufunc__).
○​ Should limit to Array API spec

●​ Which libraries should wrap which other libraries
○​ Jon wrote pint technical commentary
○​ Community standard of pair-wise interactions

●​ Repo for discussions
○​ Should live in pydata
○​ https://github.com/pydata/duck-array-discussion

●​ Definition of duck array:
○​ Follows Array API standard
○​ + any other methods
○​ Xarray Variable lives above all these duck arrays

●​ Which libraries should wrap other libraries?
○​ Proposal: xarray -> pint -> dask -> others
○​ Point: multiple tops, not just xarray
○​ Q: Tree looks fine, but how would a new array type fit in?

■​ Can tree be defined independently of actual libraries in it?
■​ No: interactions have to be defined pairwise between real libraries
■​ But don’t have to define all interactions with everything

●​ Want to only define operations on similar types, else raise
○​ Proposal: possessing dtype, shape, ndim, is a possible hierarchy
○​ Need something beyond array_priority to define the hierarchy tree pairwise
○​ Further discussions go into https://github.com/pydata/duck-array-discussion

https://github.com/pydata/xarray/issues/5648#issuecomment-890310954
https://github.com/dask/dask/issues/6635
https://github.com/pydata/xarray/issues/3950
https://github.com/pydata/xarray/issues/5559
https://github.com/dask/dask/issues/5329
https://github.com/dask/dask/issues/6637
https://github.com/pydata/xarray/issues/4324
https://github.com/pydata/xarray/issues/3245
https://github.com/pydata/xarray/pull/5568
https://github.com/dask/dask/issues/6636
https://github.com/dask/dask/issues/6385
https://github.com/pydata/duck-array-discussion
https://github.com/pydata/duck-array-discussion

●​ Step back: outputs we want?
○​ Design docs?

■​ Live in this project? NEP?
■​ https://scientific-python.org/
■​ Data-apis.orgs

●​ How are pairwise interactions defined?
○​ Current way: via protocols like __array_ufunc__, __array_function__, etc
○​ Explicit vs implicit strategy

■​ Implicit is protocols, currently widespread
■​ Explicit is NEP37: https://numpy.org/neps/nep-0037-array-module.html

○​ Maybe we should have a new library that defines the shared type resolution DAG?
■​ That way libraries cannot possibly disagree in their code
■​ Implementation?
■​ TODO (Jon): make a discussion issue for this

○​ Or we could define a slot for “handled types”?
●​ Consistency of type deferral? (e.g., between array functions, ufuncs, module functions,

construction, and binary ops)
○​ How much should we trust user to not “break” the DAG through inconsistencies in

type deferral? How much should we enforce consistency between different type
deferrals?

■​ Every library have a way to say “here’s how I defer to another library”
■​ How do we support custom (unknown) libraries?
■​ TODO (Jon): issue discussion on this?

○​ There is consensus that these should be consistent (Pint-like) rather than
inconsistent (Dask-like), unless there is opt-out of some kind third-party/custom
library...but more discussion needed

●​ Nested array reprs (both short and full)
○​ How do you display information from nested duck arrays in a nice way for user?
○​ Xarray has _repr_inline_ function
○​ Html repr can defer to type’s html repr
○​ Python string repr is harder
○​ Suggestion:

■​ Just make user explore level by level?
○​ Verbosity vs completeness
○​ Suggestion: dict of important strings/ints from each library

■​ TODO (Hameer): issue fleshing out dict suggestion
●​ https://github.com/dask/dask/issues/6637

■​ TODO (Tom): meta issue of all the TODOs
●​ TODO: second meeting possibly in future? Wait for asynchronous discussion to find some

sticking points first

https://scientific-python.org/
https://numpy.org/neps/nep-0037-array-module.html

