
panicker@google.com
in collaboration with jasonjmiller@google.com, domenic@google.com, surma@google.com
Aug 27, 2018
Status: draft

Motivation
A strategy for improving guarantees of user responsiveness is to free up the main thread by
moving script work off main thread. (See: Off Main Thread Roadmap.) At the same time,
improved scheduling on the main thread also helps responsiveness.

The purpose of this doc is to explore a scheduling API backed by a thread-pool that supports
main thread and off main thread scheduling.

To promote moving script off-main-thread we need a thread-pool based API, as it is not
reasonable for web developers to reason about cost of spinning up threads (one per dedicated
worker) and utilizing them effectively.
A Scheduling API enables us to:

●​ provide more ergonomic way to offload work from main-thread (compared to dedicated
worker)

●​ maintain control over management of threads and decisions on scheduling of tasks on
them

●​ encourage developers to think carefully about how to structure their app and which work
to move off main-thread

●​ fill gaps in scheduling work on the main thread
●​ enable indicating semantic priority to help the system with scheduling

The proposal is inspired from iOS’ GCD aka Grand Central Dispatch, as it is a proven model
that addresses the above goals. Lessons we learned from iOS and GCD are captured in this
doc.
A centerpiece of GCD design is abstracting away threads and having developers think of
posting async tasks which may (or may not) run on different thread. While the web has good
primitives for async (async / await, promises), it is important for an effective Scheduling API to
support async and sync work, both on and off the main thread.

Use-cases | Example Apps
●​ On main thread: smart pen app: As the user draws on a canvas, gestures, letters &

words are recognized. Enqueues constant stream of “input” tasks competing with a
constant stream of “render” tasks (recognizer results) and some intermittent
“background” tasks (recognition kick-off and possibly reanalysis as drawing context
increases).

mailto:panicker@google.com
mailto:jasonjmiller@google.com
mailto:domenic@google.com
mailto:surma@google.com
https://docs.google.com/document/d/1tHwqs0JJsyFBVQqAfJQHk1HzuXuuW-VNIsbgAlOXILE/edit#heading=h.duky3u2l7j6m
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://developer.mozilla.org/en-US/docs/Web/API/Web_Workers_API/Using_web_workers
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit#heading=h.5ag0871ljwm
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit#heading=h.5ag0871ljwm
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit#heading=h.6bpja79xhazy
https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit#heading=h.6bpja79xhazy

●​ Off main thread: Search app updates results as-you-type: enqueues tasks off main
thread to fetch results, post-processes them to generate result set. When a final (high
confidence) result set is obtained for a search, it enqueues a main thread tasks to
display results.

Requirements
●​ support for posting work on and off the main thread
●​ support for “concurrent execution” of posted tasks: tasks start in the order they were

posted (so that no task gets indefinitely postponed), but may run concurrently (i.e. may
not finish in the order they were posted)

●​ support for “serial execution” i.e. guarantees of tasks executing serially one after
another.

●​ enable the system (i.e., not the web developer) to maintain control over thread
management:

○​ creating / removing threads
○​ sizing / resizing of thread-pool
○​ decision on whether posted tasks will run off or on main thread (when off main

thread is requested)
○​ ability to penalize / lower the priority of queues with misbehaving tasks
○​ encourage cooperative scheduling

●​ API must require developer to explicitly specify thread / queue:
○​ for posting results back (otherwise thread hops at arbitrary times can add

latency)
○​ for current and any subsequent tasks

●​ semantic priority to aid scheduling

Non-goals
●​ fully replace existing scheduling APIs like rIC, rAF, setTimeout, setInterval.

NOTE: We may build a higher level JS library as a “canonical scheduler” for the app that in turn
uses rIC, rAF, setTimeout, this proposed API etc.

API sketch
The following API sketch is heavily inspired by iOS’ GCD Dispatch Queues; it also takes
inspiration from Justin Fagnani’s queue scheduler API.

Semantic priority for queue
Semantic priority i.e. enum TaskQueuePriority can be one of these:

●​ "user-blocking"
●​ "user-visible" (similar priority as rAF)

https://docs.google.com/document/d/12j569km3ot_72bi5hzFGNLWDyPXiUX9Hvnnr3IK3JKM/edit#heading=h.6qtrrrq46myi
https://developer.apple.com/library/content/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html#//apple_ref/doc/uid/TP40008091-CH102-SW1
https://github.com/justinfagnani/queue-scheduler

●​ "default"
●​ "background" (similar priority as rIC)

NOTE: These match up with GCD and somewhat match our own internal TaskTraits.

Serial & Concurrent Task queues
Serial task queue: Tasks are guaranteed to start and finish in the order submitted, i.e. a task
does not start until the previous task has completed.

Concurrent task queue: Tasks are guaranteed to start in the order they were posted (so that
no task gets indefinitely postponed), but may run concurrently i.e. may not finish in the order
they were posted.

User defined Serial Task queues
User can define their own serial task queues on “scheduler”, which is on the window object:
myQueue = new TaskQueue(‘myCustomQueue’, "input");

const result = await myQueue.postTask(task, <list of args for task>);
where task is a function.
args will be structured cloned, by default.

NOTE: We need new syntax here to prevent double-parsing of the function -- both on & off main
thread. We may need syntax for capturing, for example see JS blocks.

See this section on considerations for specifying where & when results are posted.

scheduler.getTaskQueue(‘myCustomQueue’) returns the previously created queue.

TODO: Add syntax for using modules.

Global Task queues
A set of global (default) concurrent task queues will be made available to post work on to the
main thread. There will be a global queue for each priority level.
In addition, a default global serial task queue will be available for posting on the main thread.

TaskQueue.default("input") returns the global concurrent task queue for posting to main
thread.

https://developer.apple.com/documentation/dispatch/dispatchqos
https://cs.chromium.org/chromium/src/base/task/task_traits.h
https://github.com/domenic/proposal-blocks#variable-capture

TODO: API considerations

Returning Results from Tasks
Default behavior of posting result back to main thread at arbitrary times is problematic -- as it
could result in latency, and unexpected user experience.

Posting subsequent tasks
Default posting of subsequent tasks to the same / current thread is problematic -- instead this
should be explicitly specified.

Handling cancellation & changing priority of posted tasks
TODO: can the queue priority be later updated, after queue creation?

Yielding to support cooperative scheduling
TODO: scheduler.yield()

Other Considerations

Access to Shared Data in a task queue
On the web, we have structured cloning, and no shared memory yet (lack of shared memory
also takes away a class of thread safety concerns).
How could tasks within a task-queue share data without shared memory access?
This could be accomplished in a couple ways:
- with one isolate and one JS context per thread: a task queue could be pinned to a thread and
can access the (shared) JS context across tasks; later the isolate could be migrated to another
thread as needed
- with one isolate and multiple JS contexts -- one context per task-queue: a task queue would be
pinned to a thread and have its own (not shared) context, but them it’s hard to move it across
threads.
- waiting for something like Typed Object for data sharing.

NOTE: GCD queues allow associating custom context data and have “finalizer” for custom clean
up..

Scope, Isolate & JS Context
Each workerpool thread will have a scope, and an isolate.
See above comment on task queue to JS context mapping.

TODO: what (extent of) problems can arise from access of global state (and overhead of
breaking dependence - if needed); would this be exacerbated from wide usage from script,
including external libraries and 3P content?

Background: Worklet is backed by a (or N) global-scope (opposite of dedicated worker which is
not available globally) which are spun up / down (in the case of worklet, this is done proactively
to break dependence on global state.

Code importing & Module map sharing
Threads in the threadpool would share a module map (similar to worklets).
While all posted tasks (running off thread) adding up to a single global module map seems odd,
putting something in the module map generally does not interfere with other code. It just makes
the module cached for future imports.
There are exceptions when you use side-effecting modules, like polyfills. But those are rare, and
at least in the polyfill case sharing them should be OK. So global module map for the threadpool
is likely OK.
Note: worklets don't support dynamic import() because worklets require all worklet global
scopes import the same modules in order.

Mitigating multiple thread hops + latency
Ideally the API will not make it easy for developers to create multiple thread hops -- which can
stagger across frames and become a major source of user latency. This is a known issue with
Android’s AsyncTask for instance, as it makes it too easy to post to main thread (default
behavior) too often and at arbitrary times.
Ideas:

●​ [panicker] developer explicitly indicates where (which thread / queue) the results are
posted on

●​ [skyostil] return finished results once per frame
●​ [ojan] If we add the ability to deliver tasks batched in some way (e.g. once per frame),

we could make that optional for worker threads and required for the main thread as a
way of forcing app developers to avoid many round trips for UI work.

●​ consider something like Framework (TikTok) Android’s use of sequential executor for
task queues on UI: add task queues and flush before yielding UI thread ?

Capabilities
We likely need to support most existing capabilities in worker, as well consider:

●​ which ones should not be supported (any blocking / sync work will become a bottleneck)
●​ what additions are needed.

https://drafts.css-houdini.org/worklets/#module-responses-map
https://docs.google.com/document/d/1oMWFf9Fieb9QqT_qvttsl19Fx0KdJ5s_winDdG0owhA/edit#heading=h.fo9dd3aquubw
https://developer.android.com/reference/android/os/AsyncTask
https://cs.corp.google.com/piper///depot/google3/java/com/google/apps/tiktok/concurrent/SuspendableUiThreadExecutor.java?q=SuspendableUiThreadExecutor&sq=-file:google3/experimental&dr=CSs&l=78

Restrictions
We may need to add certain restrictions from the get-go, as it will be nearly impossible to add
them later.
Maybe rules like:

●​ having an upper bound on thread hops based on priority level and system knowledge.
●​ autonomy to NOT run task off thread
●​ any sticks for penalizing misbehaving / long tasks?

Performance
Having quantifiable data on performance, at least for best-case scenarios, is critical.
We are starting to look at benchmarking here.

FAQ

Why not just build a JS library instead of platform primitive?
There are gaps in the platform that make a purely JS polyfill quite lacking:

Off Main Thread Gaps:

1.​ System controlled thread management: developers (both 1P and 3P) should be able to
carve out and schedule work off main thread without doing their own thread
management, instead they should use a system managed threadpool that can
coordinate shared data for task queues. Also every app component, included library, 3P
embed or Ad shouldn’t create and manage its own threads, which is the default behavior
with using worker API.

2.​ Handling task cancellation: a JS library would have to spin entire worker up / down to
cancel posted tasks, while a platform primitive could do this efficiently by relaying
messages to the worker.

3.​ Double parsing of functions in posted tasks
4.​ Ergonomics of posting tasks

NOTE: Something like JS blocks would tackle #3 and #4 but not #1 and #2.

On Main Thread Gaps:

●​ Prioritizing against browser internal work and network fetching
●​ Lack of task priority i.e. ability to schedule script chunks at different priorities
●​ Support for cooperative scheduling via yield() (TODO: clarify relationship with

shouldYield()): “await yield” in JS causes a microtask to be queued
○​ workarounds used today include: postmessage after each rAF,

https://docs.google.com/document/d/1J35n22PD2WxHdQMexdSVfuMw9Zj-XtDZmEKcst20X0Y/edit#heading=h.ud04g6fo9z9m
https://github.com/domenic/proposal-blocks

	Motivation
	Use-cases | Example Apps

	Requirements
	Non-goals
	API sketch
	Semantic priority for queue
	Serial & Concurrent Task queues
	User defined Serial Task queues
	Global Task queues
	TODO: API considerations
	Returning Results from Tasks
	Posting subsequent tasks
	Handling cancellation & changing priority of posted tasks
	Yielding to support cooperative scheduling

	Other Considerations
	Access to Shared Data in a task queue
	Scope, Isolate & JS Context
	Code importing & Module map sharing
	Mitigating multiple thread hops + latency
	Capabilities
	Restrictions
	Performance

	FAQ
	Why not just build a JS library instead of platform primitive?

