

Break Beam Sensor Integration with the Helium IoT Platform

1.​ Setting up the Atom

1.1.​ Install Helium Script on your development machine using the guide at
https://dev.helium.com/guides/helium-script/#installing-helium-script

1.2.​ The command `helium-script --device` should return some information about
your device, verifying that everything is hooked up correctly.

1.3.​ Helium Script is based on Lua 5.3, making the Lua reference manual a
great resource when coding for the Atom: https://www.lua.org/manual/5.3/

1.4.​ Helium has some example code on their Github so we can just use their
code to interface with the Digital Extension Board rather than writing our
own from scratch.

1.5.​ Get the code for the SX1509 (the chip used by the Digital Extension
Board) device from:
https://github.com/helium/api-examples/tree/master/script/sx1509​

2.​ Connecting the Break Beam Sensor to the Atom

2.1.​ Connect the Helium Digital Extension Board to the Helium Atom
Development Board using the included ribbon cable.

https://dev.helium.com/guides/helium-script/#installing-helium-script
https://www.lua.org/manual/5.3/
https://github.com/helium/api-examples/tree/master/script/sx1509

2.2.​ Hook up the break beam sensor as shown below (Black to GND, Gray to
VDD, White to IO0).

2.3.​ Confirm the USB is plugged into the Atom board and the 12V adapter is
plugged into the wall.

2.4.​ Once you are at this point, you should be able to see an LED on the front
of the break beam sensor. You should also be able to toggle the sensor
using the included reflector. Below is a detailed image of the helium digital
board connections.

3.​ Writing code for the Atom

3.1.​ The code in `main.lua` (from
https://github.com/helium/api-examples/tree/master/script/sx1509) will
initialize the chip and set the LED to a random color every half second.
Let's start by changing the color of the LED to indicate the status of the
break beam.

3.2.​ Set pin 0 as an input. Looking at line 22, Helium is already setting pin 1 as
an input. Since we are using pin 0, change the 1 on lines 22 & 24 to a 0
and pin 0 is now an input.

3.3.​ Turn off the LEDs to avoid a bright flash of the wrong color at the start.
The LED on this board is CMY, so to turn it off set i, j and k to 0xFF on line
28-30 (equivalent to #FFFFFF which is the CMY hex code for black).

3.4.​ If someone breaks the beam, the he.wait command on line 37 will return
immediately and events will evaluate to true.

3.5.​ Let's set the color of the LED based on if the beam is broken rather than
setting it randomly. To check the status of the break beam sensor, read the
value of pin 0. This can be done with the digital:read_pin command found
in `sx1509.lua`

https://github.com/helium/api-examples/tree/master/script/sx1509

3.5.1.​ if events then​
 if digital:read_pin(0) then​
 i = 0x00​
 j = 0x88​
 k = 0xff​
 else​
 i = 0x00​
 j = 0xff​
 k = 0xff​
 end​
end

3.6.​ Upload the program to the Helium Atom with `helium-script.exe -upm
main.lua sx1509.lua` and load the program by pressing the RST button on
the board.

3.7.​ If everything is working correctly, the LED on the Digital Extension Board
should match the LED on the break beam sensor.

4.​ Sending and receiving data
4.1.​ Now that we can get the status of the break beam sensor, let's log that

data to Helium. This will allow us to track how many times the beam is
broken over a longer period of time and analyze it. Maybe we want to
know how many cars go down a particular street in a day or how busy that
street is at certain times of day.

4.2.​ Logging a value with Helium is actually pretty simple. `he.send(port, time,
type, value)` is all we need to do and Helium takes care of the rest. Name
the port with any string, for this tutorial let's choose something descriptive
like "beam". The time that the beam was broken is conveniently already in
the variable `now`. For the type and value, we'll just send a 1 or a 0 so `i`
(for integer) will work fine. Adding an `he.send` to each case in our code
above we end up with:

4.2.1.​ if events then​
 if digital:read_pin(0) then​
 he.send("beam", now, "i", 1)​
 i = 0x00​
 j = 0x88​
 k = 0xff​
 else​
 he.send("beam", now, "i", 0)​
 i = 0x00​
 j = 0xff​
 k = 0xff​
 end​

end

4.3.​ To actually run this code on the Helium Atom, use `helium-script -upm
main.lua sx1509.lua`

4.4.​ To view the data from Helium, please visit dashboard.helium.com

4.5.​ To pull this data into your application, check out the API available at
https://dev.helium.com/cloud-api

5.​ Connecting Helium data to the wider world
5.1.​ Once sensor data is stored in the Helium cloud it can be integrated into

applications through several methods. There is a command line
interface(CLI), REST API, and a Node-Red instance on the Helium
dashboard site (alpha feature). Documentation for the CLI and API are
located https://dev.helium.com/.

5.2.​ To create a node-red flow that sends an alert (sms or email) each time that
the beam sensor is triggered follow the steps below:

5.2.1.​ Go to https://dashboard.helium.com/flows.

5.2.2.​ Drag the timeseries Helium node onto the canvas and double click
to open the configuration window. Set the Data Source to be an
individual sensor and then select the desired sensor.

5.2.3.​ Add an alerting Helium node onto the canvas and connect it to the
timeseries node. Configure this node to send an alert if the value on
port ‘beam’ is over 0.

5.2.4.​ The alerting node will pass on its payload whenever the sensor is
triggered but to send a custom message add a switch function node
to the canvas and connect it to the the alerting node. Configure the
switch function node with the desired message in the msg.payload
topic.

5.2.5.​ Add a twilio or email node to the canvas and route the output of the
switch node to it.Configure this node with the appropriate email or
phone number.

5.2.6.​ Below is an image of the complete workflow along with a debug
node.

https://dev.helium.com/cloud-api
https://dev.helium.com/
https://dashboard.helium.com/flows

6.​ Conclusion
6.1.​ In this tutorial, we took a fairly "dumb" sensor (a break beam that just acts

as a relay) and hooked it up to the Helium environment and a messaging
service fairly easily . If you have any questions or want to checkout some
other types of sensors, please come see us at the Kinetic Vision & Helium
sponsor table.

	Break Beam Sensor Integration with the Helium IoT Platform
	1.​Setting up the Atom
	1.1.​Install Helium Script on your development machine using the guide at https://dev.helium.com/guides/helium-script/#installing-helium-script
	1.2.​The command `helium-script --device` should return some information about your device, verifying that everything is hooked up correctly.
	1.3.​Helium Script is based on Lua 5.3, making the Lua reference manual a great resource when coding for the Atom: https://www.lua.org/manual/5.3/
	1.4.​Helium has some example code on their Github so we can just use their code to interface with the Digital Extension Board rather than writing our own from scratch.
	1.5.​Get the code for the SX1509 (the chip used by the Digital Extension Board) device from: https://github.com/helium/api-examples/tree/master/script/sx1509​
	2.​Connecting the Break Beam Sensor to the Atom
	3.​Writing code for the Atom
	4.​Sending and receiving data
	5.​Connecting Helium data to the wider world
	6.​Conclusion

