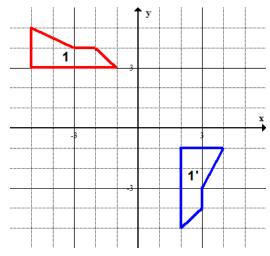
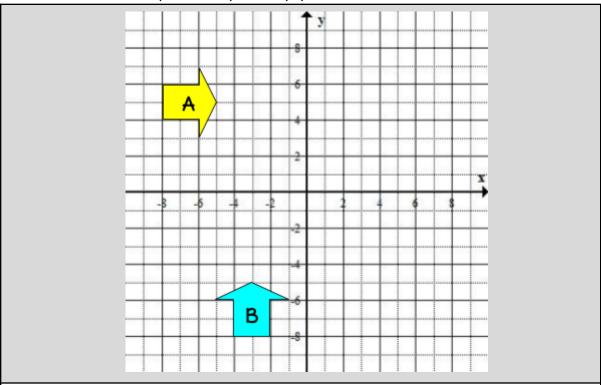

- 1. Triangle ABC has vertices at A (1, 2), B (4, 6), and C (4, 2) in the coordinate plane. The triangle will be reflected over the x-axis and then rotated 90 degrees clockwise about the origin to form triangle A'B'C'. What are the vertices of triangle A'B'C'?
 - a. A' (1, -2), B' (4, -6), C' (4, -2)
 - b. A' (-1, 2), B' (-4, 6), C' (-4, 2)
 - c. A' (-2, 1), B' (-6, 4), C' (-2, 4)
 - d. A' (-2, -1), B' (-6, -4), C' (-2, -4)
- 2. Describe the sequence of transformations that maps figure 1 onto figure 2.

- a. Reflect figure 1 over the x axis, then rotate clockwise about the origin.
- b. Reflect figure 1 over the y axis, then rotate counterclockwise about the origin.
- c. Translate figure 1 left 7 units and rotate counterclockwise 90 about the origin.
- d. Translate figure 1 down 5 units and rotate clockwise 90 about the origin.


3.

If \triangle ABC were rotated 90° clockwise about the origin, reflected across the y-axis, and translated down 5, how many vertices of \triangle ABC would lie in quadrant IV?


- a. none
- b. 1
- c. 2
- d. All 3

4. Are these figures congruent? Justify your answer using the definition of congruence.

- 5. \triangle ABC has the following coordinates as vertices: A (6,0) and B (-2,2). The midpoint of \overline{BC} is (-2.5,0). What is the coordinate of vertex C?
 - **A**. (2, 1)
 - **B**. (-2, 2)
 - **C**. (-2.25, 1)
 - **D**. (-3, -2)

Extended Constructed Response (respond on paper)

- 1. Are Figure A and Figure B congruent? Justify your answer.
- 2. Transform Figure B to create Figure C by performing the following sequence of rigid motions: (make sure and label Figure C)
- a. Reflection across x = 2, b. Reflection across y = -4
- 3. Predict whether Figure C can be transformed back to Figure B using a sequence of rigid motions. Predict whether Figure C can be transformed back to Figure B using a single rigid motion. Justify your predictions.

SCORING GUIDE SUCCESS CRITERIA

4-Exceeding

- Meets all of the Ready Success Criteria AND
- Correct prediction w/justification for a single rigid motion transformation

3-Ready

- Correctly identifies whether Figure A & B are congruent
- Valid justification
- Correct creation & location of Figure C
- Correct prediction for a sequence of rigid motion transformation
- Valid justification