
Tab 1

Meta title: Calculate the difference between two dates in Java.
Meta description: Learn the different methods to calculate the difference between any two
Java date instances by different methods and their pros and cons.

https://chatgpt.com/share/680ce43d-c5cc-800e-8131-235251ac66df
Done

Calculating the difference between two
Java date instances
Java has many ways to get the time difference between two dates, from simple methods like
using the Date class to advanced methods. The Java standard library and third-party libraries
provide classes and methods to calculate the months between two dates.

In this blog, we will learn in detail about the different methods that can be used to calculate the
difference between any two dates.

Table of contents:
Java Date Difference Calculation
Methods of Calculating the difference between two Java date instances in Java

Method 1: Using SimpleDateFormat and Date Class in Java
Method 2: Using TimeUnit Class in Java
Method 3: Using LocalDate and ChronoUnit Class in Java
Method 4: Using Period Class (For Date Difference in Years, Months, and Days) in Java
Method 5: Using the Duration.between() in Java
Method 6: Using the JodaTime Library in Java
Method 7: Using the Temporal#until() in Java

Pros and Cons of Various Java Date Difference Calculation Methods
Conclusion

Java Date Difference Calculation
In Java, dates are useful for knowing the time between any two events. For example, you want
to find the difference between an employee's joining date, a student's admission date, or an
appointment date. Java offers many ways to calculate this. You can use various methods, but
the method you will choose depends on how you need the result to be, e.g., milliseconds,
seconds, minutes, or days.

https://chatgpt.com/share/680ce43d-c5cc-800e-8131-235251ac66df

Methods of Calculating the difference between two Java date
instances in Java
In Java, there are several ways to calculate the difference between two Dates or times. Some of
them are:

Method 1: Using SimpleDateFormat and Date Class in Java
This method parses the date string into a Date object using SimpleDateFormat and then simply
calculates the difference between the getTime() values of the two Date instances.
SimpleDateFormat is used to define the date format and parse the date string into Date objects

Steps of using SimpleDateFormat and Date Class:

1.​ Parsing Date Strings: By using the SimpleDateFormat, you can parse the date
string(yyyy-MM-dd HH:mm:ss) into Date objects.

2.​ Subtracting Dates: Once you have the Date objects, you can get the time in
milliseconds using the getTime() method.

3.​ Calculating the Difference: Subtract the above two time values and then convert them
into days, hours, minutes, or seconds.

Example:
[codelab lang="java"]<pre>
import java.text.SimpleDateFormat;
import java.util.Date;
public class DateDifferenceMethod1 {
 public static void main(String[] args) {
 try {
 SimpleDateFormat sdf = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
 // Define two date strings (in this case, "yyyy-MM-dd HH:mm:ss" format)
 String dateStr1 = "2025-03-23 10:00:00"; // Older date
 String dateStr2 = "2025-03-25 12:30:00"; // Newer date
 Date date1 = sdf.parse(dateStr1);
 Date date2 = sdf.parse(dateStr2);
 // Calculate the difference in milliseconds
 long diffInMillis = date2.getTime() - date1.getTime();
 long diffInSeconds = diffInMillis / 1000;
 long diffInMinutes = diffInSeconds / 60;
 long diffInHours = diffInMinutes / 60;
 long diffInDays = diffInHours / 24;
 System.out.println("Difference in Days: " + diffInDays);
 System.out.println("Difference in Hours: " + diffInHours);
 System.out.println("Difference in Minutes: " + diffInMinutes);
 System.out.println("Difference in Seconds: " + diffInSeconds);

 } catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
</pre>[/codelab]

Output:

Explanation:
The above program finds the difference between the two dates in days, hours, minutes, and
seconds. It parses the date strings into Date objects, gets the time difference in milliseconds,
and then converts it into various time units.

Method 2: Using TimeUnit Class in Java
The TimeUnit class in Java is part of the java.util.concurrent package. It is used to convert the
time differences between many units like milliseconds, seconds, minutes, hours, etc.. In this
class, no manual calculation is required. It is part of the java.util.concurrent package and is used
to make changes like milliseconds to seconds, minutes, hours, or days.

Example:
[codelab lang="java" run="disable"]<pre>
import java.util.Date;
import java.util.concurrent.TimeUnit;
public class DateDifferenceMethod2 {
 public static void main(String[] args) {
 Date d1= new Date();
 try {
 // Sleep for 20 seconds
 Thread.sleep(20000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 Date d2= new Date();
 // difference
 long Millis = d2.getTime() - d1.getTime();
 long Hours = TimeUnit.MILLISECONDS.toHours(Millis);
 long Minutes = TimeUnit.MILLISECONDS.toMinutes(Millis);

 long Seconds = TimeUnit.MILLISECONDS.toSeconds(Millis);
 System.out.println("Difference in Hours: " + Hours);
 System.out.println("Difference in Minutes: " + Minutes);
 System.out.println("Difference in Seconds: " + Seconds);
 }
}
</pre>[/codelab]

Output:

Explanation:
The above Java code takes two times before and after a 20 second gap, then it calculates the
time difference in milliseconds, and converts it into hours, minutes, and seconds using the
TimeUnit method.

Method 3: Using LocalDate and ChronoUnit Class in Java
In Java 8 and later, the java.time package gives easy usage of the dates and times with classes
like LocalDate for the date without time and LocalDateTime with date and time. The
ChronoUnit class is used to calculate the difference between two LocalDate or LocalDateTime
objects easily. It can be used with both LocalDate and LocalDateTime objects.

Steps of Using LocalDate and ChronoUnit Class in Java:

1. Use LocalDate or LocalDateTime: The LocalDate class defines a date without a time, and
LocalDateTime includes both the date and time.
2. Calculate the Difference: Use the ChronoUnit.DAYS.between() method to calculate the
difference in the various units.

Example:
[codelab lang="java"]<pre>
import java.time.LocalDate;
import java.time.temporal.ChronoUnit;
public class DateDifferenceMethod3 {
 public static void main(String[] args) {
 LocalDate d1 = LocalDate.of(2025, 3, 23);
 LocalDate d2 = LocalDate.of(2025, 3, 25);
 // Calculating the difference
 long diff = ChronoUnit.DAYS.between(d1, d2);
 System.out.println("Difference in Days: " + diff);
 }

}
</pre>[/codelab]

Output:

Explanation:
The above Java program uses LocalDate and ChronoUnit.DAYS to find the day difference
between two dates. It does not make changes in the units and finds the difference in days
between them.

Method 4: Using Period Class (For Date Difference in Years, Months, and
Days) in Java
The Period class in Java is used for calculating the difference between two LocalDate objects
of years, months, and days. This is helpful when you are using dates that use years and
months. To use the Period.between() method, two LocalDate objects are needed, i.e., the Start
Date and the End Date. It calculates the difference between the two dates and then breaks it
into three i.e., in years, months, and days.

Note: You should be careful when you are using the dates. If the start date comes after the end
date, the result will be negative for years, months, and days. Negative values are used for
overdue checks or validating the date inputs.

Steps of Using Period Class:

1.​ Using LocalDate: Create two LocalDate objects, date1 and date2
2.​ Calculating the Period: Use the Period.between() method to get the difference in

years, months, and days.

Example:
[codelab lang="java"]<pre>
import java.time.LocalDate;
import java.time.Period;
public class DateDifferenceMethod4 {
 public static void main(String[] args) {
 // Create two LocalDate instances
 LocalDate d1 = LocalDate.of(2025, 3, 23); // 2025-03-23
 LocalDate d2 = LocalDate.of(2027, 5, 25); // 2027-05-25
 // Calculate the period between the two dates
 Period period = Period.between(d1, d2);
 // Output the result (years, months, and days)
 System.out.println("Difference: " + period.getYears() + " years, " +
 period.getMonths() + " months, " + period.getDays() + " days.");

 }
}
</pre>[/codelab]

Output:

Explanation:

The above Java program uses the LocalDate and Period to calculate the difference between
two dates in years, months, and days. Two LocalDate instances are created, and then the
difference with the help of Period.between() method is calculated.

Method 5: Using the Duration.between() in Java
The Duration.between() method is a part of the java.time package, which is a modern API for
using the date and time. This method finds the difference between the two Temporal objects like
LocalDateTime, Instant, or ZonedDateTime and gives the result as a Duration object, which
shows a time difference in seconds and nanoseconds.

But like Period.between(), which is used to calculate differences in terms of years, months, and
days, the Duration.between() method is used for calculating the difference in terms of time units
such as seconds, minutes, hours, and milliseconds.

Note: Duration works with LocalDateTime, Instant, and ZonedDateTime objects. It does not
work with LocalDate.

Syntax:
<pre>
Duration duration = Duration.between(startDateTime, endDateTime);
</pre>

Example:
[codelab lang="java"]<pre>
import java.time.Duration;
import java.time.LocalDateTime;
public class DurationExample {
 public static void main(String[] args) {
 LocalDateTime s = LocalDateTime.of(2025, 3, 23, 10, 0, 0);
 LocalDateTime e = LocalDateTime.of(2025, 3, 25, 12, 30, 0);
 Duration duration = Duration.between(s, e);
 // Get the difference in various time units
 long Hours = duration.toHours(); // Total hours

 long Minutes = duration.toMinutes(); // Total minutes
 long Seconds = duration.getSeconds(); // Total seconds
 System.out.println("Difference in Hours: " + Hours);
 System.out.println("Difference in Minutes: " +Minutes);
 System.out.println("Difference in Seconds: " + Seconds);
 }
}
</pre>[/codelab]

Output:

Explanation:
The above code finds the time difference between two LocalDateTime values, i.e. start and end.
Then it uses Duration.between() to calculate the difference and then gives the result in hours,
minutes, and seconds.

Method 6: Using the JodaTime Library in Java
Joda-Time is a library that is used for date and time operations in Java. It was earlier used in
older Java projects because it was simple and easy to use. You can use Joda-Time to calculate
the difference between two dates or times in a flexible manner than the old Date class as it
handles the time zones and formatting in an efficient manner.

Steps to Use Joda-Time for Date Difference:

Step 1. Adding Joda-Time to the Project:
First, include the Joda-Time library in your project. If you are using Maven, add the following
dependency to your pom.xml:
​
<pre> ​
<dependency>
 <groupId>joda-time</groupId>
 <artifactId>joda-time</artifactId>
 <version>2.10.10</version> <!--use the latest version -->
</dependency>
</pre>

Step 2. Creating DateTime Objects:
Use the DateTime class from Joda-Time to create your dates and times.​

Step 3. Calculating the Difference:
Now, use the Days, Hours, Minutes, or Seconds class to find the difference as per the required
unit.

Example:
[codelab lang="java" run="disable"]<pre>
import org.joda.time.DateTime;
import org.joda.time.Days;
public class JodaExample {
 public static void main(String[] args) {
 DateTime s = new DateTime(2025, 3, 23, 10, 0, 0); // Start date:
 DateTime e = new DateTime(2025, 3, 25, 12, 30, 0); // End date:
 // Calculate the difference in days
 int diff = Days.daysBetween(s, e).getDays();
 System.out.println("Difference in Days: " + diff);
 }
}
</pre>[/codelab]

Output:

Explanation:
The above Java code uses the Joda-Time library for calculating the difference in days between
the two dates. It creates two DateTime objects for the start and the end dates. Then the
Days.daysBetween(start, end) method is used to find the number of days between the two
dates.

Note: Joda-Time is not used now.

Method 7: Using the Temporal#until() in Java
The Temporal#until() method in Java is used with Temporal objects like LocalDate,
LocalDateTime, or ZonedDateTime. It calculates the time between the two Temporal objects in
different units such as days, hours, months, etc.

This method is a part of the Temporal interface in Java. It allows you to find the difference
between the two Temporal objects, like ChronoUnit.DAYS, ChronoUnit.HOURS,
ChronoUnit.MONTHS, and more.

Syntax:
<pre>

long until(Temporal endExclusive, TemporalUnit unit);
</pre>

where:
endExclusive is The Temporal object representing the end point,
Unit is the unit of time

Example:
[codelab lang="java"]<pre>
import java.time.LocalDate;
import java.time.LocalDateTime;
import java.time.ZonedDateTime;
import java.time.temporal.ChronoUnit;
import java.time.ZoneId;
public class TemporalUntilCombinedExample {
 public static void main(String[] args) {
 LocalDate s = LocalDate.of(2025, 3, 23);
 LocalDate e = LocalDate.of(2025, 3, 25);
 long dBetween = s.until(e, ChronoUnit.DAYS);
 System.out.println("Days between (LocalDate): " + dBetween);
 LocalDateTime sT = LocalDateTime.of(2025, 3, 23, 10, 0);
 LocalDateTime eT = LocalDateTime.of(2025, 3, 23, 14, 0);
 long hours = sT.until(eT, ChronoUnit.HOURS);
 System.out.println("Hours between (LocalDateTime): " + hours);
 ZonedDateTime startZonedDateTime = ZonedDateTime.of(2025, 3, 23, 10, 0, 0, 0,
ZoneId.of("UTC"));
 ZonedDateTime endZonedDateTime = ZonedDateTime.of(2025, 3, 23, 10, 30, 0, 0,
ZoneId.of("UTC"));
 long Between = startZonedDateTime.until(endZonedDateTime, ChronoUnit.MINUTES);
 System.out.println("Minutes between (ZonedDateTime): " + Between);
 LocalDateTime startTimeWithSeconds = LocalDateTime.of(2025, 3, 23, 10, 0, 0);
 LocalDateTime endTimeWithSeconds = LocalDateTime.of(2025, 3, 23, 10, 5, 30);
 long secondsBetween = startTimeWithSeconds.until(endTimeWithSeconds,
ChronoUnit.SECONDS);
 System.out.println("Seconds between (LocalDateTime): " + secondsBetween);
 ZonedDateTime startZonedDateTimeWithZone = ZonedDateTime.of(2025, 3, 23, 10, 0, 0,
0, ZoneId.of("America/New_York"));
 ZonedDateTime endZonedDateTimeWithZone = ZonedDateTime.of(2025, 3, 23, 12, 30, 0,
0, ZoneId.of("America/New_York"));
 long hoursBetweenWithZone =
startZonedDateTimeWithZone.until(endZonedDateTimeWithZone, ChronoUnit.HOURS);
 System.out.println("Hours between (ZonedDateTime with time zone): " +
hoursBetweenWithZone);
 LocalDate startMonthDate = LocalDate.of(2025, 1, 1);

 LocalDate endMonthDate = LocalDate.of(2025, 3, 1);
 long monthsBetween = startMonthDate.until(endMonthDate, ChronoUnit.MONTHS);
 System.out.println("Months between (LocalDate): " + monthsBetween);
 }
}
</pre>[/codelab]

Output:

Explanation:
In the above Java code, the until() method is used to calculate the difference between the two
dates or times. It calculates the days between two LocalDate objects, the hours between
LocalDateTime objects, and the minutes between ZonedDateTime objects. It also calculates
seconds and hours with time zones and months between the LocalDate objects.

Pros and Cons of Various Java Date Difference Calculation
Methods

Method Advantages Disadvantages

Method 1:
SimpleDateFormat and
Date Class

It is simple to understand and easy
to implement. It works in older
versions of Java.

It requires manual conversion
for time units. It does not
handle time zones efficiently.

Method 2: Using
TimeUnit Class

It makes the code more readable. It
prevents rounding errors and easily
converts milliseconds to days,
hours, minutes, and seconds.

It cannot calculate differences
in months or years.

Method 3: Using
LocalDate and
ChronoUnit Class

It is simple to use and has clean
syntax. It easily handles differences
in days, months, and years.

It only works with LocalDate,
not LocalDateTime.

Method 4: Using
Period Class

It is ideal for calculating differences
in years, months, and days. It
provides more human-readable
results.

It cannot calculate differences
in hours, minutes, or seconds.
It only works with LocalDate.

Method 5: Using
Duration.between()

It is best for calculating differences
in hours, minutes, seconds, and
nanoseconds. It works well with
LocalDateTime, Instant, and
ZonedDateTime.

It cannot directly calculate
differences in days, months,
or years. It requires
conversion for LocalDate.

Method 6: Using
Joda-Time Library

It is more flexible than Date and
Calendar. It provides better time
zone handling and supports both
date and time difference
calculations.

It adds an extra dependency
to the project.

Method 7: Using
Temporal#until()

It works with LocalDate,
LocalDateTime, and
ZonedDateTime. It is modern and
efficient.

It has a more complex syntax
and is less commonly used.

Conclusion
There are many ways to calculate the difference between two dates in Java. Simple methods
like SimpleDateFormat and the Date class have simple calculations, and TimeUnit offers
conversions. Recent Java methods like LocalDate, ChronoUnit, and Period have simple
calculations for dates. Duration.between() method is used to calculate time differences, and the
Temporal#until() method is used to calculate differences in any unit other than time. The data is
handled in an easy manner using Joda-Time libraries.

If you want to learn more about Java, you can refer to our Java Course.

Calculating the difference between two Java date instances -
FAQs

Q1. How can the difference between two datetime instances be calculated?
To get the difference between two dates, subtract date2 from date1.

Q2. How to get the number of days difference between two dates in Java?
If we want to calculate the difference in days, the ChronoUnit.DAYS.between() method is the
best way

Q3. What is greater than date comparison?

https://intellipaat.com/java-training/

"Greater than" and "Less than" operators compare the chronological order of the two dates

Q4. How to check if dates overlap in Java?
The overlaps() method takes two Interval objects as parameters and returns true if there is any
intersection between the two intervals.

Q5. How to check if two dates are equal in Java?
The .equals() method of the Date class compares the current Date object to the specified object.

Toc:

Toc:
1.​ Introduction
2.​ Methods of Calculating the difference between two Java date instances in Java
3.​ Method 1: Using SimpleDateFormat and Date Class in Java
4.​ Method 2: Using TimeUnit Class in Java
5.​ Method 3: Using LocalDate and ChronoUnit Class in Java
6.​ Method 4: Using Period Class (For Date Difference in Years, Months, and Days) in Java
7.​ Method 5: Using the Duration.between() in Java
8.​ Method 6: Using the JodaTime Library
9.​ Method 7: Using the Temporal#until()
10.​Advantages and disadvantages of different methods of calculating the difference

between two Java date instances
11.​Conclusion
12.​FAQs

AI CHECK

CHATGPT REPORT:

CHATGPT REPORT:

https://chatgpt.com/c/680cd529-f200-8003-a963-54079eeaf653

	Tab 1
	Calculating the difference between two Java date instances
	Java Date Difference Calculation
	Methods of Calculating the difference between two Java date instances in Java
	Method 1: Using SimpleDateFormat and Date Class in Java
	Method 2: Using TimeUnit Class in Java
	Method 3: Using LocalDate and ChronoUnit Class in Java
	Method 4: Using Period Class (For Date Difference in Years, Months, and Days) in Java
	Method 5: Using the Duration.between() in Java
	Method 6: Using the JodaTime Library in Java
	Method 7: Using the Temporal#until() in Java

	Pros and Cons of Various Java Date Difference Calculation Methods
	Conclusion
	Calculating the difference between two Java date instances - FAQs

	Toc:
	AI CHECK
	CHATGPT REPORT:

