
B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

1a) Convert the decimal number 59 into its equivalent binary, octal, and hexadecimal
equivalent.

Convert 59 to Binary (Base 2)

Binary uses only 0s and 1s. We repeatedly divide by 2 and record the remainders.

Division by 2 Quotient Remainder

59 ÷ 2 = 29 29 1

29 ÷ 2 = 14 14 1

14 ÷ 2 = 7 7 0

7 ÷ 2 = 3 3 1

3 ÷ 2 = 1 1 1

1 ÷ 2 = 0 0 1

Now, we read from bottom to top:​
59₁₀ = 111011₂

2. Convert 59 to Octal (Base 8)

Octal uses digits 0-7. We repeatedly divide by 8 and record the remainders.

Division by 8 Quotient Remainder

59 ÷ 8 = 7 7 3

7 ÷ 8 = 0 0 7

Now, we read from bottom to top:​
59₁₀ = 73₈

3. Convert 59 to Hexadecimal (Base 16)

Hexadecimal uses digits 0-9 and A-F. We repeatedly divide by 16 and record the remainders.

Division by 16 Quotient Remainder

59 ÷ 16 = 3 3 11 (B)

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
3 ÷ 16 = 0 0 3

Now, we read from bottom to top:​
59₁₀ = 3B₁₆ (where B represents 11 in decimal)

Final Answer:

Binary: 111011₂​
Octal: 73₈​
Hexadecimal: 3B₁₆

--

1b) Explain the difference between implicit and explicit type conversion in C.

Feature Implicit Type Conversion
(Type Promotion)

Explicit Type Conversion
(Type Casting)

Definition Automatically performed by
the compiler.

Manually done by the
programmer using type
casting.

Syntax Happens implicitly, no
special syntax needed.

Uses (type) before the
variable or expression (e.g.,
(float)

Example float result = 5 + 2.5; (5 is
converted to float)

float result = (float)5 / 2; (5
is explicitly cast to float)

Risk of Data Loss No, as smaller types are
promoted safely.

Yes, when converting larger
types to smaller ones (e.g.,
double to int).

--​
1c) Compare while and do while statement with example

 While do while

Definition
A loop that executes while a
condition is true.

A loop that executes at least
once, then continues if the
condition is true.

Condition Check Condition is checked before
execution.

Condition is checked after
execution.

Execution Guarantee May not execute if the
condition is false at the
beginning.

Always executes at least
once, even if the condition is
false

Syntax c while(condition) { // Code
}

c do { // Code }
while(condition);

Example

 int x = 5;
while (x > 10)
{
printf("Hello");
x++;
 } // Does NOT execute

 int x = 5; do
{
printf("Hello");
x++;
 }
 while (x > 10); // Executes

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
1 d) Write a C program to calculate factorial of a number using recursion

// C program to find factorial of given number using recursion//

#include <stdio.h>

unsigned int factorial(unsigned int n)

{

 // Base Case//

 if (n == 1)

 {

 return 1;

 else

 // Multiplying the current N with the previous product of Ns//

 return n * factorial(n - 1);

}

int main() {

 int num = 5;

 printf("Factorial of %d is %d", num, factorial(num));

 return 0;

}

​
Output:

Factorial of 5 is 120

1e) Compare structure and union based on memory usage and use cases in c
programming

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

Parameter Structure Union

Definition

A structure is a user-defined data
type that groups different data

types into a single entity.

A union is a user-defined data type
that allows storing different data types

at the same memory location.

Keyword
The keyword struct is used to

define a structure
The keyword union is used to define

a union

​
Size

The size is the sum of the sizes of
all members, with padding if

necessary.

The size is equal to the size of the
largest member, with possible

padding.

Memory
Allocation

Each member within a structure is
allocated unique storage area of

location.

Memory allocated is shared by
individual members of union.

Data Overlap
No data overlap as members are

independent.
Full data overlap as members shares

the same memory.

Accessing
Members

Individual member can be
accessed at a time.

Only one member can be accessed at
a time.

1f) Define pointer variable, give an example of NULL pointer

Pointer variable: A pointer is a variable that stores the memory address of another
variable as its value.

NULL pointer:

A null pointer in C does not point to any memory location.

�​ They are used in dynamic memory allocation, error handling, etc. Any pointer which
is assigned the value NULL becomes a null pointer.

//C NULL pointer demonstration//

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
#include <stdio.h>

int main()

{

 // declaring null pointer

 int* ptr = NULL;

 // derefencing only if the pointer have any value

 if (ptr == NULL) {

 printf("Pointer does not point to anything");

 }

 else {

 printf("Value pointed by pointer: %d", *ptr);

 }

 return 0;

}

​
Output

Pointer does not point to anything

2a) Define operator? How many types of operators, Explain any four types of operators
with examples.

OPERATORS

C supports a rich set of operators. Operators are used in programs to

manipulate data and variables. They usually form a part of the mathematical

of logical expressions.

C operators are classified into a number of categories.
 They include:

1.​ Arithmeticoperators

2.​ Relationaloperators

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
3.​ Logicaloperators

4.​ Assignmentoperators

5.​ Increment and Decrementoperators

6.​ Conditionaloperators

7.​ Bitwiseoperators

8.​ Specialoperators

ARITHMETIC OPERATORS

The Arithmetic operators are

+​ (Addition)

-​ (Subtraction)

*​ (Multiplication)

/ ​ (Division)

% ​(Modulo division)

Eg: 1) a-b 2) a+b3) a*b​ 4)a/b​ 5)a%b

The modulo division produces the remainder of an integer

division. The modulo division operator cannot be used on

floating pointdata.

Note: C does not have any operator for exponentiation.

RELATIONAL OPERATORS

Comparisons can be done with the help of relational operators. The expression containing a

relational operator is termed as a relational expression.The value of a Relational Expression is

either zero or 1.

Operater​ meaning

1) < (is less than)

2) <= (is less than or equal to)

3) > (is greater than)

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
4) >= (is greater than or equal to)

5) = = (is equal to)

6) != (is not equal to)

Eg:​ a<b or1<20

LOGICAL OPERATERS

C has the following three logical operators.

&&​ (logicalAND)

||​ (logical OR)

!​ (logicalNOT)

Eg:​ 1) if(age>55 &&sal<1000)

2) if(number<0 || number>100)

ASSIGNMENT OPERATORS

The usual assignment operator is ‘=’.In addition, C has a set of

‘shorthand’ assignment operators of the form, v op = exp;

Eg:​ x +=y+1;

This is same as

the statement

x=x+(y+1);

2b) Explain the significance of each number system (decimal, binary, octal, and
hexadecimal) in computer applications.Convert 478 into binary, hexadecimal and
Convert 2F3A into binary and octal number

�Convert 478 into binary, hexadecimal

1. Convert 478 to Binary (Base 2)

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
Binary uses only 0s and 1s. We repeatedly divide by 2 and record the remainders.

Division by 2 Quotient Remainder

478 ÷ 2 = 239 239 0

239 ÷ 2 = 119 119 1

119 ÷ 2 = 59 59 1

59 ÷ 2 = 29 29 1

29 ÷ 2 = 14 14 1

14 ÷ 2 = 7 7 0

7 ÷ 2 = 3 3 1

3 ÷ 2 = 1 1 1

1 ÷ 2 = 0 0 1

Now, we read from bottom to top:​
478₁₀ = 111011110₂

2. Convert 478 to Hexadecimal (Base 16)

Hexadecimal uses digits 0-9 and A-F. We repeatedly divide by 16 and record the
remainders.

Division by 16 Quotient Remainder

478 ÷ 16 = 29 29 14 (E)

29 ÷ 16 = 1 1 13 (D)

1 ÷ 16 = 0 0 1

Now, we read from bottom to top:​
478₁₀ = 1DE₁₆ (where D = 13 and E = 14 in decimal)

Final Answer:

🔹Binary: 111011110₂​
🔹Hexadecimal: 1DE₁₆

�Convert 2F3A into binary and octal number

Let's convert 2F3A (hexadecimal) into binary and octal, step by step.

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
1. Convert 2F3A (Hex) to Binary (Base 2)

Each hexadecimal digit is converted into a 4-bit binary equivalent:

Hex Digit Binary Equivalent

2 0010

F (15) 1111

3 0011

A (10) 1010

Now, combining all the binary values:​
2F3A₁₆ = 0010 1111 0011 1010₂​
 Removing leading zeros: 10111100111010₂

2. Convert 2F3A (Hex) to Octal (Base 8)

To convert hex to octal, we first convert hex to binary, then group the binary digits into sets
of three (starting from the right).

We already have:​
2F3A₁₆ = 10111100111010₂

Now, grouping in sets of three from right to left:

10 111 100 111 010 (add leading 0s if needed: 010 111 100 111 010)

Now, convert each 3-bit group to octal:

Binary Group Octal Equivalent

010 2

111 7

100 4

111 7

010 2

So,​
2F3A₁₆ = 27472₈

Final Answer:

🔹Binary: 10111100111010₂​
🔹Octal: 27472₈

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
3a) Define array. Write a C program to perform matrix multiplication of two 2
dimensional arrays using nested loop. Ensure that matrix dimensions are validated
before performing multiplication.

An array is a group of related data items that share a common name and common type.

eg: An array name is ‘salary’s used to represent a set of salaries of a group of employees.

●​ A particular value is indicated by writing a number ‘índex’or ‘subscript’ in brackets

after the array name.

Eg:salary[10]

Advantage: The ability to use a single name to represent a collection of items and to refer to

an item by specifying the item number enables to develop concise and efficient programs.

PROGRAM

#include <stdio.h>

int main() {

 int r, c, a[100][100], b[100][100], sum, i,k,mul[10][10], j;

printf("Enter the number of rows (between 1 and 100): ");

scanf("%d", &r);

printf("Enter the number of columns (between 1 and 100): ");

scanf("%d", &c);

printf("\nEnter elements of 1st matrix:\n");

 for (i = 0; i< r; i++)

 for (j = 0; j < c; j++) {

printf("Enter element a%d%d: ", i + 1, j + 1);

scanf("%d", &a[i][j]);

 }

printf("Enter elements of 2nd matrix:\n");

 for (i = 0; i< r; i++)

 for (j = 0; j < c; j++) {

printf("Enter element b%d%d: ", i + 1, j + 1);

scanf("%d", &b[i][j]);

 }

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

 // adding two matrices and printing sum of matrices

 for (i = 0; i< r; i++)

 for (j = 0; j < c; j++) {

​ for(k=0;k<r;k++)

​ {

​ sum+= a[i][k] * b[k][j];

}

mul[i][j]=sum;

 sum=0;

printf("%d ", mul[i][j]);

printf("\n\n");

 }

 }

3b) write a C program to reverse the given integer number

#include <stdio.h>

int main() {

 int n, reverse = 0, remainder, original;

printf("Enter an integer: ");

scanf("%d", &n);

 original = n;

 while (n != 0) {

 remainder = n % 10;

 reverse = reverse * 10 + remainder;

 n /= 10;

 }

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

 if (original % 10 == 0) {

printf("Reversed number = %d", reverse);

 while (original % 10 == 0) {

printf("0");

 original /= 10;

 }

 } else {

printf("Reversed number = %d", reverse);

 }

 return 0;

}

Output:

Enter an integer: 2345

Reversed number = 5432

4a) Define function? Explain function call, function definition and function prototype

with example

Functions

A function is a block of code that performs a specific task.

Dividing complex problem into small components makes program easy to understand and

use.

Types of functions

Depending on whether a function is defined by the user or already included in C compilers,

there are two types of functions in C programming

Standard library functions

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
User defined functions

Elements of user defined functions

1.function definition

2. function call

3. function declaration or prototype

Function definition

Function definition contains the block of code to perform a specific task i.e. in this case,

adding two numbers and returning it.

It is divided into two parts namely function head, function body.

When a function is called, the control of the program is transferred to the function definition.

And, the compiler starts executing the codes inside the body of a function.

Note: We should not use semicolon ; in function definition() head same like main() function.

The general syntax of a functiondefinition is as follows:

return_typefunction_name(parameter list) /*……..function head…….*/

{

 local_variables declaration; /*…..function body…..*/

 executable statement(s);

return_value;

 }

Example:

int add(int a, int b)

{

 int sum;

 sum = a + b;

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 return sum; }

Syntax of return statement

return (expression);

For example,

return a;

return (a+b);

The type of value returned from the function and the return type specified in function

prototype and function definition must match.

Function Call

Control of the program is transferred to the user-defined function by calling it.

Syntax of function call

functionName(argument1, argument2, ...);

In the above example, function call is made using addNumbers(n1,n2); statement inside

the main().

Function Declaration :

•​ Like variables function must be declared before they are used.

•​ A function prototype gives information to the compiler that the function may

later be used in the program.

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 It consists of 4 parts.

•​ Function type

•​ Function name

•​ Parameter list

•​ Terminating semi colon

SYNTAX:

returntypefunctionname(type1 argument1, type2 argument2,...);

Example:

int mul(int a,int b);

int mul(int,int);

Passing arguments to a function

In programming, argument refers to the variable passed to the function. In the above

example, two variables n1 and n2 are passed during function call. These are called actual

parameters.

The parameters a and b accepts the passed arguments in the function definition. These

arguments are called formal parameters of the function.

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

The type of arguments passed to a function and the formal parameters must match, otherwise

the compiler throws error.

If n1 is of char type, a also should be of char type. If n2 is of float type, variable b also should

be of float type.

A function can also be called without passing an argument.

4b) write a C program to check whether the sum of the digits of a number is even or
odd.

#include <stdio.h>

int main() {

 int num, sum = 0, digit;

 // Input a number from the user

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
printf("Enter a number: ");

scanf("%d", &num);

 // Calculate the sum of digits

 while (num> 0) {

 digit = num % 10; // Extract the last digit

 sum += digit; // Add it to the sum

num /= 10; // Remove the last digit

 }

 // Check if the sum is even or odd

 if (sum % 2 == 0) {

printf("The sum of the digits is EVEN.\n");

 } else {

printf("The sum of the digits is ODD.\n");

 }

 return 0;

}

5 a) Define structure and union. Explain how member of structure and union accesses
using program code

Structure Definition:

Structure is a user defined data type which hold or store heterogeneous/different types data
item or element in a single variable. It is a Combination of primitive and derived data type.

or

A structure is a collection of one or more data items of different data types, grouped together

under a single name. Variables inside the structure are called members of structure.

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
Union Defination:

A union is a special data type available in C that allows to store different data types in the
same memory location.

The members of a structure are accessed outside the structure by the structure variables using
the dot operator (.). The following syntax is used to access any member of a structure by its
variable:

Syntax

structVariable.structMember

Example

The following example illustrates how to access the members of a structure and modify them
in C.

#include <stdio.h>

#include <string.h>

struct cube

{

 // data members

 char P_name[10];

 int P_age;

 char P_gender;

};

int main()

{

 // structure variables

 struct cube p1, p2;

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 // structure variables accessing the data members.

 strcpy(p1.P_name, "XYZ");

 p1.P_age = 25;

 p1.P_gender = 'M';

 strcpy(p2.P_name, "ABC");

 p2.P_age = 50;

 p2.P_gender = 'F';

 // print the patient records.

 // patient 1

 printf("The name of the 1st patient is: %s\n", p1.P_name);

 printf("The age of the 1st patient is: %d\n", p1.P_age);

 if (p1.P_gender == 'M')

 {

 printf("The gender of the 1st patient is: Male\n");

 }

 else

 {

 printf("The gender of the 1st patient is: Female\n");

 }

 printf("\n");

 // patient 2

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 printf("The name of the 2nd patient is: %s\n", p2.P_name);

 printf("The age of the 2nd patient is: %d\n", p2.P_age);

 if (p2.P_gender == 'M')

 {

 printf("The gender of the 2nd patient is: Male\n");

 }

 else

 {

 printf("The gender of the 2nd patient is: Female\n");

 }

 return 0;

}

Access members of a union and structure:

We use the . operator to access members of a union and structure.
 to access pointer variables, we use the -> operator.

Example: Accessing Union Members

#include <stdio.h>​

union Job {

 float salary;

 int workerNo;

} j;

int main() {

 j.salary = 12.3;

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

 // when j.workerNo is assigned a value,

 // j.salary will no longer hold 12.3

 j.workerNo = 100;

 printf("Salary = %.1f\n", j.salary);

 printf("Number of workers = %d", j.workerNo);

 return 0;

}

Output

Salary = 0.0

Number of workers = 100

#include <stdio.h>

#include <string.h>

struct Person {

 char name[50];

 int age;

 float height;

};

int main() {

 struct Person person1;

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 strcpy(person1.name, "John Doe");

 person1.age = 25;

 person1.height = 6.1;

 printf("Name: %s\n", person1.name);

 printf("Age: %d\n", person1.age);

 printf("Height: %.2f\n", person1.height);

 return 0;

}

Output:

Name: John Doe

Age: 25

 Height: 6.10

5b)write a c program to maintain a record of n students details using an array of
structures with four fields(roll number,name,marks and grade).Assume appropriate
data type for each field. Print the marks of the student give the student name as input

#include<stdio.h>​
#include<stdlib.h>​
#include<string.h>​
#include<conio.h>​
struct student{​
 char name[14];​
 int rollNo;​
 int marks[3];​
 float percentage;​
};​
​
int main(){​
 struct student *stuArray;​
 int n,i,j;​
 int tempTotal=0,flag=0,foundIndex;​
 char tempName[14];​
 clrscr();​

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 printf("\n No of Students: ");​
 scanf("%d",&n);​
 stuArray = (struct student*)malloc(n*sizeof(struct student));​
 for(i=0;i<n;i++){​
 printf("\n %d.Name :",(i+1));​
 scanf("%s",&stuArray[i].name);​
 printf("\n Roll Number :",(i+1));​
 scanf("%d",&stuArray[i].rollNo);​
 tempTotal=0;​
 for(j=0;j<3;j++)​
 {​
 printf("\n Mark %d :",(j+1));​
 scanf("%d",&stuArray[i].marks[j]);​
 tempTotal+=stuArray[i].marks[j];​
 }​
 stuArray[i].percentage=tempTotal/3;​
 }​
​
 printf("\n Enter the Name to be Searched: ");​
 scanf("%s",&tempName);​
 for(i=0;i<n;i++){​
 if(strcmp(tempName,stuArray[i].name)==0)​
 {​
 foundIndex=i;​
 flag=1;​
 break;​
 }​
 }​
 if(flag==0)​
 {​
 printf("Details Not Found");​
 }​
 else​
 {​
 printf("\n Mark of %s are given below...",tempName);​
 for(i=0;i<3;i++)​
 {​
 printf("\n Mark %d is %d",(i+1),stuArray[foundIndex].marks[i]);​
 }​
 }​
 getch();​
 return 0;​
}

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
6a) Write a c program to find the sum and mean of all elements in an array using
pointer

#include <stdio.h>

int main()

{

​ int Size, i, sum = 0;

​ printf("Please Enter the Array size = ");

​ scanf("%d", &Size);

​ int arr[Size];

​ int *parr = arr;

​ printf("Enter the Array Items = ");

​ for (i = 0; i < Size; i++)

​ {

​ ​ scanf("%d", parr + i);

​ }

​ for (i = 0; i < Size; i++)

​ {

​ ​ sum = sum + *(parr + i);

​ }

​ float avg = (float)sum / Size;

​ printf("\nThe Sum of Array Items = %d\n", sum);

​ printf("\nThe Average of Array Items = %.2f\n", avg);

}

​

6b) Develop a c program that reads an employee data to store into a file and allow user
to search for an employee by id, displaying their if found

#include <stdio.h>

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
#include <stdlib.h>

#include <string.h>

#define FILENAME "employees.dat"

// Employee structure

typedef struct {

 int id;

 char name[50];

 float salary;

} Employee;

// Function to add employee data to file

void addEmployee() {

 Employee emp;

 FILE *file = fopen(FILENAME, "ab"); // Append mode

 if (file == NULL) {

 printf("Error opening file!\n");

 return;

 }

 printf("Enter Employee ID: ");

 scanf("%d", &emp.id);

 printf("Enter Employee Name: ");

 scanf("%s", emp.name);

 printf("Enter Employee Salary: ");

 scanf("%f", &emp.salary);

 fwrite(&emp, sizeof(Employee), 1, file);

 fclose(file);

 printf("Employee added successfully!\n");

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
}

// Function to search for an employee by ID

void searchEmployee() {

 int id;

 Employee emp;

 FILE *file = fopen(FILENAME, "rb"); // Read mode

 if (file == NULL) {

 printf("Error opening file!\n");

 return;

 }

 printf("Enter Employee ID to search: ");

 scanf("%d", &id);

 while (fread(&emp, sizeof(Employee), 1, file)) {

 if (emp.id == id) {

 printf("Employee Found:\n");

 printf("ID: %d\n", emp.id);

 printf("Name: %s\n", emp.name);

 printf("Salary: %.2f\n", emp.salary);

 fclose(file);

 return;

 }

 }

 printf("Employee with ID %d not found!\n", id);

 fclose(file);

}

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

int main() {

 int choice;

 do {

 printf("\nEmployee Management System\n");

 printf("1. Add Employee\n");

 printf("2. Search Employee by ID\n");

 printf("3. Exit\n");

 printf("Enter your choice: ");

 scanf("%d", &choice);

 switch (choice) {

 case 1:

 addEmployee();

 break;

 case 2:

 searchEmployee();

 break;

 case 3:

 printf("Exiting program...\n");

 break;

 default:

 printf("Invalid choice! Please enter again.\n");

 }

 } while (choice != 3);

 return 0;

}

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)

7a) What is dynamic array? How it is created? Give a typical example of use of a
dynamic array

�​ A Dynamic Array is allocated memory at runtime and its size can be changed later in
the program.

We can create a dynamic array in C by using the following methods:

Using malloc() Function

 It is defined inside <stdlib.h> header file.
Syntax:

ptr = (cast-type*) malloc(byte-size);

Using calloc() Function

Syntax:
ptr = (cast-type*)calloc(n, element-size);

Resizing Array Using realloc() Function

Syntax:
ptr = realloc(ptr, newSize);

// C program to create dynamic array using malloc() function

#include <stdio.h>
#include <stdlib.h>

int main()
{

 // address of the block created hold by this pointer
 int* ptr;
 int size;

 // Size of the array
 printf("Enter size of elements:");
 scanf("%d", &size);

 // Memory allocates dynamically using malloc()
 ptr = (int*)malloc(size * sizeof(int));

 // Checking for memory allocation
 if (ptr == NULL) {
 printf("Memory not allocated.\n");

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 }
 else {

 // Memory allocated
 printf("Memory successfully allocated using "
 "malloc.\n");

 // Get the elements of the array
 for (int j = 0; j < size; ++j) {
 ptr[j] = j + 1;
 }

 // Print the elements of the array
 printf("The elements of the array are: ");
 for (int k = 0; k < size; ++k) {
 printf("%d, ", ptr[k]);
 }
 }

 return 0;
}

Output:
Enter size of elements:5

Memory successfully allocated using malloc.

The elements of the array are: 1, 2, 3, 4, 5,

7b) Write a c program to find the transpose of a matrix. Explain the logic and provide
an example with input and output

#include <stdio.h>

int main() {

 int a[10][10], transpose[10][10], r, c;

 printf("Enter rows and columns: ");

 scanf("%d %d", &r, &c);

 // asssigning elements to the matrix

 printf("\nEnter matrix elements:\n");

 for (int i = 0; i < r; ++i)

 for (int j = 0; j < c; ++j) {

 printf("Enter element a%d%d: ", i + 1, j + 1);

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
 scanf("%d", &a[i][j]);

 }

 // printing the matrix a[][]

 printf("\nEntered matrix: \n");

 for (int i = 0; i < r; ++i)

 for (int j = 0; j < c; ++j) {

 printf("%d ", a[i][j]);

 if (j == c - 1)

 printf("\n");

 }

 // computing the transpose

 for (int i = 0; i < r; ++i)

 for (int j = 0; j < c; ++j) {

 transpose[j][i] = a[i][j];

 }

 // printing the transpose

 printf("\nTranspose of the matrix:\n");

 for (int i = 0; i < c; ++i)

 for (int j = 0; j < r; ++j) {

 printf("%d ", transpose[i][j]);

 if (j == r - 1)

 printf("\n");

 }

 return 0;

}

Output

B.E I-SEMESTER REGULAR (MAIN)EXAMINATION JAN/FEB-2025
C PROGRAMMING

(Common to CIVIL & CSE)
Enter rows and columns: 2

3

Enter matrix elements:

Enter element a11: 1

Enter element a12: 4

Enter element a13: 0

Enter element a21: -5

Enter element a22: 2

Enter element a23: 7

Entered matrix:

1 4 0

-5 2 7

Transpose of the matrix:

1 -5

4 2

0 7

	OPERATORS
	ARITHMETIC OPERATORS
	RELATIONAL OPERATORS
	LOGICAL OPERATERS
	ASSIGNMENT OPERATORS
	Syntax
	Example
	Access members of a union and structure:

