
2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

Practice Session-09: Monitoring with 
Prometheus 

 

In DevOps culture, developers require seamless integration of application and business 
metrics into their infrastructure, as they play a more active role in the CI/CD pipeline and 
have increased autonomy in operations and debugging. In this practice session, you're going 
to work with monitoring tools for both infrastructure and application.  

Make sure that you have already gone through Lab-08. 
 

Prerequisite 
●​ Basic knowledge on k8s 
●​ Basic knowledge on YAML  
●​ Familiar with GitLab webIDE or Git commands 

 

1. Environment Setup 

Step 1.1. Create a Gitlab Project 

1.​ In Gitlab, create a blank project with name prac09-monitoring-prometheus   

under your group 
Devops2024fall/students/devops2024Fall-<lastname>-<studyCode> 

2.​ Inside your controller VM, create a directory for this practice session and change the 
directory:  

mkdir ~/prac09 && cd ~/prac09 
3.​ Store your ID of the project prac09-monitoring-prometheus in a file using this 

command: echo "<your_project_ID>" > ~/prac09/project_id.txt 
4.​ In the following exercises and steps, you may use Gitlab  WebIDE to add, remove, 

and edit the files and folders in your Gitlab project. 

Step 1.2. Basic requirements 
1.​ We will monitor three VMs and services in this session. 

○​ Controller VM 
○​ K3snode1 VM 
○​ K3snode2 VM 

 
2.​ We have setup files in this Gitlab Repo, which are required to set up four services: 

Prometheus, Alertmanager, node exporter, and kube-state-metrics. 

https://docs.google.com/document/d/1RopjDQde-iS9YiDGLCo17RxfPTkNIU14/edit?usp=sharing&ouid=103839630263575827683&rtpof=true&sd=true
https://gitlab.cs.ut.ee/devops2024-fall/all-practice-sessions-pub/prac09-monitoring-files.git


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

1.​ Prometheus is a high-scalable open-source monitoring framework. It 
provides out-of-the-box monitoring capabilities for the Kubernetes container 
orchestration platform. Also, In the observability space, it is gaining huge 
popularity as it helps with metrics and alerts. The 
prac09-monitoring-prometheus/prometheus has four YAML files. 

●​ clusterRole.yaml: Prometheus uses Kubernetes APIs to read all the 
available metrics from Nodes, Pods, Deployments, etc. For this 
reason, we need to create an RBAC policy with read access to 
required API groups and bind the policy to the monitoring namespace.  

●​ config-map.yaml: All configurations for Prometheus are part of the 
prometheus.yaml file and all the alert rules for Alertmanager are 
configured in prometheus.rules.  

○​ prometheus.yaml: This is the main Prometheus configuration 
which holds all the scrape configs, service discovery details, 
storage locations, data retention configs, etc 

○​ prometheus.rules: This file contains all the Prometheus alerting 
rules 

●​ prometheus-deployment.yaml: This is used to create prometheus 
deployment along with volumes, configs, etc. 

●​ prometheus-service.yaml: This is used to create a service for the 
prometheus dashboard to access for the user. We fix the nodeport 
address 30000 to access the Prometheus. 

2.​ Node exporter is an official Prometheus exporter for capturing all the Linux 
system-related metrics. It collects all the hardware and OS level metrics that 
are exposed by the kernel. Here we are using it to collect all three VMs 
metrics. The prac09-monitoring-prometheus/node-exporter has two yaml 
files. 
daemonset.yaml: This is used to create node exporter service as a daemon 
set which will scrape the vm metrics from three vms. 
service.yaml:  This is used to create a service for node exporters. 
 

3.​ AlertManager is an open-source alerting system that works with the 
Prometheus Monitoring system. Here we send the alerts to Zulip 
(https://zulip.cs.ut.ee). 
AlertManagerConfigmap.yaml: This is used to create a configmap with a set 
of alert rules and Zulip integrations. 
Deployment.yaml: This is used to create an alertmanager deployment. 
 

4.​ Kube State metrics is a service that talks to the Kubernetes API server to 
get all the details about all the API objects like deployments, pods, 
daemonsets, Statefulsets, etc. 

       We have all the files required to set up four services. Please have a look at each of the 
files and understand the structure. 

https://prometheus.io/
https://devopscube.com/docker-container-clustering-tools/
https://devopscube.com/docker-container-clustering-tools/
https://devopscube.com/what-is-observability/
https://prometheus.io/docs/instrumenting/exporters/
https://devopscube.com/list-linux-networking-troubleshooting-and-commands-beginners/
https://zulip.cs.ut.ee
https://github.com/kubernetes/kube-state-metrics


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
 
 

3.​ Download all the folders (i.e. prometheus, alertmanager, node-exporter, and 
kube-state-metrics) from our shared Gitlab project 
https://gitlab.cs.ut.ee/devops2024-fall/all-practice-sessions-pub/prac09-monitoring-fil
es.git and upload to your Gitlab Project and Commit with a message “Required 
project files added”. Your Gitlab project should have the following structure:

​
 

4.​ We need a shell runner for this project, there are two options to achieve this. You can 
use any one option, but recommended is to create a brand new runner(option 1) 
because some of you created a runner with sudo in the previous lab, which may 
create problems while running the helm commands. 
Option 1:  Create a new shell runner 

https://gitlab.cs.ut.ee/devops2024-fall/all-practice-sessions-pub/prac09-monitoring-files.git
https://gitlab.cs.ut.ee/devops2024-fall/all-practice-sessions-pub/prac09-monitoring-files.git


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

○​ You can create the runner for prac09-monitoring-prometheus with tag: 
monitoring under Settings→CI/CD→Runners, and execute the command in 
the controller VM to create the runner.  

i.​ Enter the GitLab instance URL:  https://gitlab.cs.ut.ee/ 
ii.​ Enter a name for the runner: monitoring 
iii.​ Enter an executor: shell 

 
​ Option 2:  Use existing  shell runner 

○​ Enable the shell runner for this project. You can do this at 
Settings→Runners→Other available runners. Here,  look for your shell runner 
and click on Enable Runner for this project. 

○​ Update the tags: add the tag monitoring 
5.​ In further steps, if you get the pipeline jobs in the Pending state, then try to run the 

runner in the VM using the command 
gitlab-runner run shell 

Step 1.3. Notes  
Below some of the instructions are descriptive. That means you may get errors while 
executing the given minimal version of the commands. You need to investigate and fix those 
errors. For this, you may need to google and debug the error by yourself. 

2. Setting up Prometheus and associated services 
on controller VM 
In this exercise, we are going to set up the following services in the controller VM. We will 
install it using the helm. The helm chart is from the Prometheus community project.  
We will install the following services for us: 
 

Service Name Purpose  Port 
numbers  

For more 
information 

Prometheus-serve
r 

It is an open-source monitoring solution that 
pulls the performance metrics from the 
remote VMs and pods based on specific 
time intervals. Further, trigger the alerts 
based on PromQL queries    

30000 https://prometheus.io/  

Alertmanager Send notification to webhook endpoints 
based on trigger from Prometheus events   

31000 https://prometheus.io/doc
s/alerting/latest/alertmana
ger/  

Kube-state-metrics Kube-state-metrics for orchestration and 
cluster level metrics: deployments, pod 
metrics, resource reservation, etc. 
 

8081 https://github.com/google/
cadvisor  

node-exporter Pull the VM metrics such as CPU, Memory, 
Disk, and Network utilization metrics. 

9100 https://prometheus.io/doc
s/guides/node-exporter/  

 

https://gitlab.cs.ut.ee/
https://github.com/prometheus-community
https://prometheus.io/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/google/cadvisor
https://github.com/google/cadvisor
https://prometheus.io/docs/guides/node-exporter/
https://prometheus.io/docs/guides/node-exporter/


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

In the following steps, we assume that you are using WebIDE to edit your GitLab project. 

Step 2.1. Setting up of Prometheus and associated services 
1.​ You can use Web IDE 
2.​ Use hosts.yaml from the previous practice session 
3.​ Create Ansible script to install prometheus and its services on k8s cluster 

Filename: prometheus-ansible.yaml 

--- 
- name: create 
  hosts: k3s_controller 
  gather_facts: true 
  # become: true 
  become_user: ubuntu 
 
  tasks: 
 
    - name: create a namespace monitoring 
      command: "k3s kubectl create namespace monitoring" 
      
 
    - name: Install prometheus 
      command: "k3s kubectl apply  -f prometheus/" 
 
    - name: Install alertmanager 
      command: "k3s kubectl apply  -f alertmanager/" 
 
    - name: Install kube-state-metrics 
      command: "k3s kubectl apply  -f kube-state-metrics/" 
 
    - name: Install node-exporter 
      command: "k3s kubectl apply  -f node-exporter/" 
     

4.​ Create a .gitlab-ci.yml file inside the root directory of your project with a job to 
create monitoring services in the controller VM. Here, we will define the commands to 
install the helm chart. 

Filename: .gitlab-ci.yml  

stages: 
  - monitor-stage 
monitor-job: 
  tags: 
      - monitoring 
  stage: monitor-stage 
  script: 
      - ansible-playbook prometheus-ansible.yaml -i hosts.yaml 
  after_script: 
    - kubectl get po -n monitoring 
 

5.​ Commit and push the changes with message Step 2.1 added ansible 
script to install prometheus services. Further, watch the jobs running in 
CI-CD-->Pipelines. After success, check for all services running in the controller VM 
using logs of the pipeline (You have mentioned after_script to display the pods,svc).  
If your script is installed then you should see the output as shown below 



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
6.​ You may also use any web browser and visit the /metrics endpoints of prometheus 

http://<controller_VM_EXT_IP>:30000/metrics 

 
 

AGS-1: At this point, Nagios will check all the services: Prometheus, 
alertmanager, kube-state-metrics, and node-exporter. 

Step 2.2. Working with Prometheus dashboard  
In this task, you're going to explore Prometheus' service for monitoring the VMs and 
container metrics pulled from node-exporter and cadvisor. Prometheus provides a functional 
query language called PromQL (Prometheus Query Language) that lets the user select and 
aggregate time series data in real-time (Ref: 
https://prometheus.io/docs/prometheus/latest/querying/basics/ ) 
 

●​ Now, access the Prometheus service in the browser at 
http://controller_VM_EXTERNAL_IP:30000. A sample output is shown 
below. 

https://prometheus.io/docs/prometheus/latest/querying/basics/
http://monitor_vm_external_ip:9090


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
You can have a look at the Prometheus dashboard to understand the different tabs.  

Alerts: List of alerts defined to trigger notifications, when defined events occur such 
as application container attends a downtime (This will be precisely explored further in 
the below Exercises) 
Graph: It has a Query browser to write the PromQL queries to get the metrics 
scraped from the cadvisor and node exporter. 
Status: This has a set of sub-tabs. For example, Configuration describes the 
configuration file prometheus.yml with targets.  Now go to Status-->Targets, 
which will display a set of targets (endpoints) from where it pulls the resource 
utilization metrics. (If you see the node-exporter and cAdvisor on other VMs are down 
with red color then those nodes or services are not working or are down) 

 



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

3. Working with PromQL for k8s node and pod 
metrics 

Step 3.1. Working with K8s node metrics. 
Now, let us write PromQL queries to see the current resource utilization of the controller 
VM.  
 

1.​ Queries are written and modified under Graph-->Expression and executed by 
clicking on Execute. There are two types of outputs(Table and Graph) and see the 
graph windows for output.  

2.​ Now let us calculate the metrics for CPU utilization of all nodes. 

Metric Name PromQL query 

Average CPU 
utilization 

100 - (avg by (instance) (rate(node_cpu_seconds_total{mode=~"idle"}[10m])) * 100) 
 

●​ Here rate(... [10m]) calculates the per-second average rate of 
increase of the time series in the range vector. 

●​ node_cpu_seconds_total metric comes from /proc/stat of the 
nodes and tells us how many seconds each CPU spent doing each 
type of work: 

●​ user: The time spent in userland 
●​ system: The time spent in the kernel 
●​ iowait: Time spent waiting for I/O 
●​ idle: Time the CPU had nothing to do 
●​ irq&softirq: Time servicing interrupts 
●​ guest: If you are running VMs, the CPU they use 
●​ steal: If you are a VM, time other VMs "stole" from your CPUs 

●​ Overall, we calculate the idle time of all the CPUs in %, and subtracting 
by 100 gives us the busy time serving all the activities(iowait,user,...) 
on intervals of every 10 minutes. 

3.​ Now run the query in Graph-->Expression and sample output of first query “Average 
CPU utilization” is shown below:(Your graph may be different, it depends on the CPU 
Utilisation) 



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
 

4.​ Similarly, calculate the memory, disk, network receive, and transmit  

Metric Name PromQL query 

Average Memory 
utilization  

100 * (1 - 
((avg_over_time(node_memory_MemFree_bytes{job="node-exporter"}[5m]) + 
avg_over_time(node_memory_Cached_bytes{job="node-exporter"}[5m]) + 
avg_over_time(node_memory_Buffers_bytes{job="node-exporter"}[5m])) / 
avg_over_time(node_memory_MemTotal_bytes{job="node-exporter"}[5m]))) 

Disk utilization (avg(node_filesystem_size_bytes{device!="rootfs"}) by (instance) - 
avg(node_filesystem_free_bytes{device!="rootfs"}) by (instance)) / 
avg(node_filesystem_size_bytes{device!="rootfs"}) by (instance) 

Network Receive 
packets per 
second 

rate(node_network_receive_packets_total{job="node-exporter"}[10m]) 

Network 
Transmit packets 
per second 

rate(node_network_transmit_packets_total{job="node-exporter"}[10m]) 
 

Step 3.2. Working with Pod metrics. 
We will calculate the pod health and metrics using PromQL 

1.​ Let us work with pod status, which is used to check the current status of the 
deployment or the pods.  
●​ Check the running pods under namespace ex3 using the query. Here 

kube_pod_status_phase will give you the status {running, failed, pending}  

Metric Name PromQL query 



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

Running  sum by (pod)(kube_pod_status_phase{namespace="ex3",phase="Running"} == 1) 
 

 

 
●​ Check the running status of the influxdb pod, here you have to add 

pod=~"influxdb-.*" inside the query {} and remove the sum by 
(pod) 

Metric 
Name 

PromQL query 

Running  (kube_pod_status_phase{namespace="ex3",pod=~"influxdb-.*",phase="Running
"} == 1) 
 

 
●​ Get the pods, that are restarting or in CrashLoopback error with the following 

query (Not to worry if you get 0 pods in this query result)  
sum by 
(deployment)(changes(kube_pod_status_ready{namespace="ex
3",condition="true"}[5m])) 
 

2.​ Now let us calculate the metrics for CPU utilization of influxdb pod 

Metric Name PromQL query 

CPU utilization sum(rate(container_cpu_usage_seconds_total{namespace="ex3", pod=~"influxdb-.*"}[5m])) 

●​ This query will calculate the rate of CPU usage over the last 5 minutes for a 
specific pod in ex3 namespace. 

●​ The following screenshot shows the CPU utilization of the influxdb pod. 
○​ Here you to change the pod name to your influxdb pod name 
○​ We are not measuring the CPU usage in terms of % as measured in 

node metrics. The CPU utilization is measured in milli-units. The letter m 
indicates the "milli" or one-thousandth (1/1000). It is a unit of 
measurement used to represent values in milli-units or milliseconds. ​
For example, "50mCpuUsage" on the Y-axis means 50 milliCPU 
seconds, which is equivalent to 0.05 CPU seconds.  



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
3.​ Similarly, calculate the memory usage of the all the pods under namespace ex3 

Metric Name PromQL query 

Memory utilization  sum(container_memory_working_set_bytes{namespace="ex3"}) by (pod) 

 
 
No AGSL for the time being. Its more of a practice of PromQL 
 

4. Working with Prometheus alerts  
In this section, you will trigger the alerts to notify the users in a Zulip stream when certain 
events occur in the monitoring metrics, for example, CPU utilization of the container exceeds 
90% then notify the user. In this experiment, you will use alertmanager service along with 
Prometheus.  
 
As an example, you will monitor the downtime of the flask application created in Exercises 3 
and send an alert notification to the Zulip topic “Lab9-Alerts” if the downtime occurs in the 
last 10 seconds. 
 
Learn more about Alertmanager: https://prometheus.io/docs/alerting/latest/alertmanager/  
 
Below are some hints to perform this: 
 

The below codes are just for reference. Copy the code at your own risk. We strongly 
recommend NOT to simply copy-paste the code. Make yourself comfortable with YAML.  

https://prometheus.io/docs/alerting/latest/alertmanager/


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

Step 4.1 Alerts rules in Prometheus 
The alert rules are defined in the prometheus.yaml which is defined in 
prometheus/config-map.yaml and the alert and configurations can be seen in the 
prometheus dashboard as shown below.  
Now, you don't have any rules defined now. 

 

Step 4.2 Create alertmanager rules and associated 
configuration files 

1.​ We will write an alert rule to notify if, influxDB pod is over using the cpu, i.e more than 
a certain limit. 

2.​ Update a file config-map.yaml inside prometheus directory  (sample code 
given below) with rules to monitor and trigger. In this file, you should write a PromQL 
query to monitor the event  

a.​ expr: 
sum(rate(container_cpu_usage_seconds_total{namespace="ex3", 
pod=~"influxdb-.*"}[1m])) > 0.003584 

b.​ Describe the interval to run the expression  
c.​ You can the annotations and descriptions 

3.​ More about alerting rules: 
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-ru
les  

Filename: prometheus/config-map.yaml 

.. previous code as it should … 

data: 

  prometheus.rules: |- 

    groups: 

    - name: devops demo 

      rules: 

      - alert: High CPU Usage 

        expr: sum(rate(container_cpu_usage_seconds_total{namespace="ex3", 

pod=~"influxdb-.*"}[1m])) > 0.003584 

        for: 1m 

        labels: 

          severity: Critical 

        annotations: 

          summary: High Memory Usage by {{ $labels.pod }} 

 

.. keep the code as it below… 

https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules
https://prometheus.io/docs/prometheus/latest/configuration/alerting_rules/#alerting-rules


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
 

4.​ Update a file AlertManagerConfigmap.yaml inside alertmanager directory 
(sample code given below). Here we define the notification endpoint for an 
alertmanager to send notifications to the end user, for example in our case it is Zulip 
topic “Lab9-Alerts”. This is used by alertmanager service to invoke the notification 
endpoint when alerts are triggered by Prometheus service. 

Filename: /alertmanager/AlertManagerConfigmap.yaml 

kind: ConfigMap 
apiVersion: v1 
metadata: 
  name: alertmanager-config 
  namespace: monitoring 
data: 
  config.yml: |- 
    global: 
      http_config:  
        tls_config:  
          insecure_skip_verify: true 
    route: 
      receiver: "Zulip-notifications" 
      group_by: ['alertname', 'priority'] 
      group_wait: 10s 
      repeat_interval: 30m 
      routes: 
        - receiver: "Zulip-notifications" 
          match: 
            severity: critical 
          group_wait: 10s 
          repeat_interval: 1m 
 
    receivers: 
    - name: "Zulip-notifications" 
      webhook_configs: 
      - url: 
"https://zulip.cs.ut.ee/api/v1/external/alertmanager?api_key=vwxcdvdfsaE5VnUZejiQHvH7ZiXU
A6Y3&stream=DevOps2024Fall&topic=Lab9-Alerts" 

5.​ You have to modify the yellow color highlighted text i.e api_key   
a.​ To get the api_key from Zulip. Follow the steps below: 

i.​ In your Zulip account, go to  Settings--Personal Settings → Bots 

 
 



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

ii.​ Create a bot by clicking on Add a new bot  
1.​ Bot Type: Incoming Webhook 
2.​ Name: Your last name  
3.​ Bot email: Your last name 
4.​ Click Add 

iii.​ Now bot is created. Copy the API KEY and update 
/alertmanager/AlertManagerConfigmap.yaml 

 
 
Inside your controller VM, store your Bot Email in a file using this command: echo 
"<your_Bot_email_value>" > ~/prac09/bot_email_value.txt 
 
Just for your reference: 
For more details to get the webhook URL follow the steps here: 
https://zulip.com/integrations/doc/alertmanager  
 

6.​ We have a prometheus/config-map.yaml file with the path to the URL 
endpoint of alertmanager service. (You need not to update anything here. 
This is just for reference) 
Refer to the following sample yaml code block prometheus/config-map.yaml.  

Filename: prometheus/config-map.yaml 

### Previous CONTENT 
 
    alerting: 
      alertmanagers: 
      - scheme: http 
        static_configs: 
        - targets: 
          - "alertmanager.monitoring.svc:9093" 
 
 
### Previous content  

 
7.​ Once you edit the configmap file, you need to delete and apply the prometheus and 

alertmanager services. Create an Ansible script update-prometheus-ansible.yaml 
to delete and create the following  

a.​ Delete prometheus/config-map.yaml (k3s kubectl delete -f 
prometheus/config-map.yaml ) 

b.​ Apply the changes prometheus/config-map.yaml (k3s kubectl apply -f 
prometheus/config-map.yaml ) 

https://zulip.com/integrations/doc/alertmanager


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

c.​ Delete alertmanager/AlertManagerConfigmap.yaml (k3s kubectl 
delete -f alertmanager/AlertManagerConfigmap.yaml) 

d.​ Apply the changes alertmanager/AlertManagerConfigmap.yaml (k3s 
kubectl apply -f 
alertmanager/AlertManagerConfigmap.yaml) 

e.​ Delete the prometheus deployment  (k3s kubectl delete -f 
prometheus/prometheus-deployment.yaml ) 

f.​ Create the prometheus deployment (k3s kubectl apply -f 
prometheus/prometheus-deployment.yaml ) 

g.​ Delete the alertmanager deployment  (k3s kubectl delete -f 
alertmanager/Deployment.yaml ) 

h.​ Create the alertmanager deployment (k3s kubectl apply -f 
alertmanager/Deployment.yaml ) 

8.​ Update the .gitlab-ci.yaml by adding an ansible command to run  
update-prometheus-ansible.yaml in script. 

9.​ Commit and push the changes with the message Step 4.2 added 
alertmanager services.  

Step 4.3 Test the alert notification  
1.​ Once the above-mentioned job has succeeded,  Goto Prometheus service 

http://controller_VM_EXT_IP:30000  and click on the tab Alerts to find the alerts in 
Inactive, Pending and Firing state.  

 
2.​ Don't worry if your alert is not in a firing state, because your expression does not hold 

true (as it depends on the threshold value you kept 0.003584 ) 
3.​ Finally, the alert signal should show in the Firing state. This means, Prometheus 

triggered alertmanager to push the notifications. 
4.​ At the same time, you should be able to get the notification in the Zulip topic. 

 
AGS-2: At this point, Nagios may check the Zulip bot messages related to 
CPU Usage. It's okay if there is no instance of high CPU usage for a 
continuous 1-minute period. You can move to the next step even without any 
alert.  
 
 

5. Adding more alerts 
In this task you have to create one more alert to notify when the influxDBdata application is 
in Running Status. 

1.​ Modify the promethehus/config-map.yaml under rules, and add alert  - alert: 
Instance Down 

http://monitor_vm_ip:9090


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

 
2.​ Commit the code with the message “Added 5. Task with an alert configuration ” 
3.​ Now look into the pipeline for updates in prometheus and alertmanager services. 
4.​ Open the prometheus on the web browser and check for the alerts. You should see 

two alerts. 

 
5.​ Intentionally delete the deployment of the influxdbdata application deployed on 

the controller VM to check if the alert configuration working correctly. 
a.​ k3s kubectl delete -f  ~/prac06/prac06-ansible/influxdbdata.yaml  

(Check for the correct path to your influxdbdata.yaml file) 
6.​ Now should see the alert firing event 

                
7.​ You also see the Zulip notification under the topic Lab9-Alerts 

             
8.​ Create the inflxudbdata deployment again using the command  

k3s kubectl apply -f  ~/prac06/Prac06-Ansible/influxdbdata.yaml  



2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

9.​ You can see the resolved alert after creating the deployment in Zulip. 

          
 

AGS-3: At this point, Nagios will check the Zulip bot messages related to 
InstanceDown.  
 
If you see AGS-1 and AGS-3 are okay in Nagios scoring, you may simply delete all the 
resources in the monitoring namespace.  
 
Below is the code sample to delete all the Prometheus services. You can do it using Ansible 
and GitLab or else you can do it using k3s kubeclt delete commands. The ansible code 
sample is shown below. 

 
 

Deliverable  
●​ Go to https://scoring.devops.cs.ut.ee/nagios/ 
●​ Find your host by your pseudonym 
●​ Make sure that All the services are in OK state. 
●​ UPDATE: Even if you see all OK (green color), still please keep your application 

running, if any. You may ignore the CRITICAL (red color) checks if the corresponding 
lab is graded for you.  

https://scoring.devops.cs.ut.ee/nagios/


2024 Fall ​ ​ ​ ​ ​ ​ ​   D/L : 13th Nov 2024, 2PM EET 

Deadline :  13th Nov 2024, 2PM EET 

Possible solutions to common problems: 
1.​ If your receive error related to TLS Handshake or Unable to connect or k8s 

Timeout errors 

 

This error is due to memory shortage, so please install the following tool that 
enables the swap space when memory is exhausted. 

sudo apt-get update 

sudo apt-get install swapspace 

  


	Practice Session-09: Monitoring with Prometheus 
	Make sure that you have already gone through Lab-08. 
	Prerequisite 

	1. Environment Setup 
	Step 1.1. Create a Gitlab Project 
	Step 1.2. Basic requirements 
	Step 1.3. Notes  

	2. Setting up Prometheus and associated services on controller VM 
	Step 2.1. Setting up of Prometheus and associated services 
	Step 2.2. Working with Prometheus dashboard  

	3. Working with PromQL for k8s node and pod metrics 
	Step 3.1. Working with K8s node metrics. 
	Step 3.2. Working with Pod metrics. 

	4. Working with Prometheus alerts  
	Step 4.1 Alerts rules in Prometheus 
	Step 4.2 Create alertmanager rules and associated configuration files 
	Step 4.3 Test the alert notification  

	5. Adding more alerts 
	Deliverable  
	Deadline :  13th Nov 2024, 2PM EET 

