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Introduction: The search for new methods to prevent and treat complicated skin wounds 
is one of the current issues of public health care. Objective: To evaluate the effects of an 
organic biodegradable scaffold on the healing rate of a polymicrobial skin wound in an 
experiment. Materials and Methods: The effect of an organic biodegradable scaffold 
was evaluated in 30 white male Wistar rats. The animals were divided into 3 groups such 
as the Control (spontaneous healing), Group 1 (scaffold 1), and Group 2 (scaffold 2). A 
model of fecal contamination was used to reproduce a purulent skin wound. A wound 
exudate was sampled to assess a microbial content in 0, 48, 96 and 168 hours from the 
beginning of observation. Data were analyzed using the Microsoft Office Excel 2019, 
Jamovi 1.0.1.9 and IBM SPSS Statistics 26. Results. By Day 19, a wound defect area 
was reduced by 98.4±1.34% (p <0.05) from baseline in Group 2 animals, that made it 
possible to consider this wound healed. The process of complete wound healing in the 
Control and Group 1 lasted for 21-22 days. At the same time, by Day 11 the decrease of 
the wound defect area was 47.95 ± 1.78% (p < 0.05) and 25.2 ± 3.67 (p <0.05) in Group 
1 and the Control, respectively. Based on microscopy, wounds in all cases healed by 
secondary intention with an evident exudative inflammation. The morphometry 
demonstrated leukocyte infiltration of the exudate to be significantly lower in Group 2 
than in Group 1 and the controls. A bacterial culture test of the wound exudate showed a 
polymicrobial pattern. In 168 hours post-injury P. aeruginosa and K. pneumoniae 
continued to grow in the control animals. Conclusion: The use of health-promoting 
scaffolds in the treatment of infected skin wounds in an experiment promotes wound 
healing. 
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Introduction 
The search for new methods to prevent and treat complicated skin wounds is one of the 
current issues of public health care. A growth of the elderly population, antibiotic 
resistance, a rising incidence of diabetes and obesity worldwide have resulted in an 
increased number of patients with persistent (chronic) skin wounds [1, 2, 3, 4].  
In Russia, more than 2.5 million people suffer from chronic, persistent wounds of the 
lower extremities [5]. There is a similar trend in many countries [6, 7]. In the USA, about 
6.5 million people [8] receive treatment for chronic skin wounds, at an annual cost of $25 
billion [9, 10, 11]. At present, the management of these patients is a heavy economic 
burden and accounts for 3-5.5% of the total health care budget costs in different countries 
[1,8].  
Chronic skin wounds are heterogeneous pathologies, including complications of vascular 
diseases (venous and arterial ulcers) [12], diabetes mellitus (trophic foot ulcers), and 
bedsores [13, 14]. Chronic wounds of the lower extremities are a challenge for both 



patients and their families; they are accompanied by infection, loss of limb function [15, 
16], financial costs, and can cause sepsis and amputation. For example, the disability rate 
of patients with venous leg ulcers ranges from 10 to 30%, and, according to some 
authors, reaches 50%. In particular, a chronic ulcer develops in almost 10% of people 
during their lifetime, which is the cause of death [5]. Annually, 5% of diabetic patients 
will develop a diabetic foot, 1% of whom will require limb amputation. The five-year 
survival rate after one major amputation of the lower extremity is about 50% [11]. 
It is clinically important to prevent most of the complications by taking preventive 
measures that reduce the risk of chronic ulcer, as well as by proper management of an 
ulcer that has already developed. Given the high social and economic significance of the 
issue, the development of new methods of treatment and care of skin wounds is a priority 
task of modern public healthcare.  
The use of wound dressings is an integral part of management of both acute and chronic 
wounds of the skin and soft tissues. To protect a wound against damage wounds dressings 
such as gauze, pile, cotton wool, tulle, etc. are traditionally used. However, the use of 
these materials is associated with a lot of adverse events such as wound drying, which 
worsens the healing process, secondary damage to the granulation tissue and epithelium 
when changing the dressing, and a high risk of wound infection [17]. Recently, attempts 
have been made to create wound dressings promoting wound healing [18]. According to 
the current knowledge of wound healing, these dressings should have specific qualities. 
When in contact with a wound surface, a dressing should provide a moist environment in 
a wound, promote elimination of excessive exudate, and maintain optimal temperature 
[19]. It should be biocompatible, water and oxygen semi-permeable, hypoallergenic, but 
cause no immune reactions, and promote tissue renewal processes. In addition, a dressing 
should not cause injury when being removed, and should also be cost effective [20]. 
Modern dressings have been developed Based on various synthetic and natural materials, 
in the form of semi-impermeable foams, films, hydrogels, fibers, colloids, alginates, and 
so on, which accelerate the process of wound healing [21, 22]. However, the problem of 
wound infection treatment is still not resolved.  
To date, the presence of an infected wound, accompanied by a systemic inflammatory 
response syndrome, is an indication for systemic antibiotic therapy. At the same time, 
local infection or a so-called “critical colonization”, aggravating healing of a chronic 
wound, requires local antimicrobial therapy. The use of antiseptics is limited by their 
cytotoxic effect on body tissues, while local antibiotics associated with a high risk of 
microbial resistance [23].   
The use of natural components with nonspecific antibacterial properties that do not cause 
microbial resistance [24], or have a local toxic effect on their own tissues [25], is 
promising in the treatment of skin wounds. Organic health-promoting scaffolds “CM”, 
composed of herbal extracts (St. John's wort, sage, yarrow), minerals, vitamins, and a 
solution of gentamicin are an example of such wound dressings. The scaffold is based on 
a natural biopolymer - gelatin (Marketing authorization No. FSR 2010/07797 dated on 
May 21, 2010, issued by the Federal Service for Supervision in Healthcare). Their use 
after dental implantation has demonstrated good results in terms of the duration of 
postoperative wound healing, as well as the recovery of oral cavity microflora [26, 27, 
28]. Based on the data obtained, the scaffold was modified to be used in surgical 
treatment of infected skin wounds. 
The research was aimed to evaluate effects of the organic biodegradable scaffold "CM" 
on the healing rate of an infected polymicrobial skin wound in the experiment. 
Materials and Methods 



30 white male Wistar rats aged 6 months and weighing 250±17.5 g were used in the 
experiment. The rats were kept in individual vivarium cages with water and food ad 
libitum. Animals were handled in accordance with the European Convention for 
Protection of Verterbrate Animals used in Experimental and other Studies, 1986. 
All manipulations with animals were performed under adequate anesthesia. A mixture of 
Zoletil (230 μl, 100 mg/kg, Virbac) and Rometar (20 μl, 20 mg/ml, Bioveta) was injected 
intraperitoneally. A surgical field was prepared as follows: fur in the interscapular region 
was cut and shaved, the skin was treated three times with an antiseptic solution for 5 
minutes and the field was delimited with sterile wipes. Additionally, infiltrative 
anesthesia was performed with 1.0 ml of a 0.5% lidocaine hydrochloride solution. Then 
the skin, subcutaneous adipose tissue and superficial fascia of the skin were excised with 
a scalpel in two semi-oval incisions. A wound bed was formed by the superficial muscle. 
A total wound area was 1.76 cm2. A 5% solution of autofeces was injected into the 
formed wound at a volume of 0.5 ml per 100 g. of body weight. To prevent additional 
injury and contamination by surrounding microorganisms, the wound was covered with a 
dense multilayer fabric. In 48 hours post inoculation, the animals were divided into three 
groups such as the control group (n=10, untreated wound healing), Group 1 (n=10, 
wound healing with the use an organic biodegradable scaffold “CM” 1) and Group 2 
(n=10, an organic biodegradable scaffold “CM” 2 used). A scaffold size was comparable 
to the skin wound area. Experiment results were recorded in all groups since grouping the 
animals (post infection day 2). Scaffolds were applied once, and were washed off with 
isotonic saline when examining the wound progression, by day 3. Subsequent wound 
healing occurred under the same conditions, without the use of drugs. 
The wound healing rate was assessed on days 0, 3, 7, 11, 15, 19, and 21 using digital 
images. The camera was set at the same distance from the skin surface. The lens was 
placed perpendicular to the wound. A metric graduated ruler was placed next to the 
wound to assess its size. A metric scale was used as a standard. Wound defect areas were 
determined on each image using the ImageJ software (U.S. National Institutes of Health, 
Bethesda, MD, USA). The wound surface area change was calculated with the formula: 
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 A histological examination was performed on days 1 and 7 after the start of the 
experiment. Animals were sacrificed by Zoletil overdose (100 mg/kg, Virbac). Then, 
tissues were excised for a subsequent histological examination. The tissues including the 
experimental wound area and fragments of scaffolds implanted were fixed in a 10% 
buffered formalin solution for 24 hours. Histological preparation, embedding, and 
microtomy at a slice thickness of 4 μm were performed according to the standard 
technique. Tissue specimens were stained with hematoxylin and eosin. The quantification 
of inflammatory infiltration involved the morphometry of digital histotopograms 
(high-resolution images) of longitudinal sections of the tissue samples obtained. The 
entire section area was recorded using a high-performance scanner Aperio AT2 (Leica 
Biosystems, Germany) at ×20 magnification. Out of 30 visual fields (VFs) with an area 
of 1 mm2

 randomly selected on each histotopogram 10 VFs were located above the skin 
muscle, 10 VFs being at the level of the muscle, and 10 Fs located under the muscle, 
respectively. Then, segmented WBCs were counted on the selected VFs. 



 A microbial examination of the wound surface was performed in 0, 48, 96 and 168 hours 
after beginning the experiment. A sterile 1.0 × 1.0 cm gauze was placed on the wound 
surface with a sterile instrument, and slightly pressed to the wound bed. The gauze 
soaked with a wound exudate was placed in a test tube containing 1.0 ml of sterile saline. 
A washout diluted as 1:100 and 1:1,000 (0.1 ml each) was inoculated on a plain dense 
medium BrainHeartInfusionAgar (Himedia). Culture plates were incubated at 37°C for 
48 hours, then grown microorganism colonies were counted. A microbial content was 
estimated as a number of colony-forming units in 1.0 ml of the washout - CFU/ml taking 
into account the dilutions and the washout volume. Colonies of different morphological 
types were examined in Gram-stained smears with light microscopy. 
 Statistical processing of the results obtained was performed on a personal computer 
using the software such as Microsoft Office Excel 2019, Jamovi 1.0.1.9, and IBM SPSS 
Statistics 26. A comprehensive multivariate ANOVA with repeated measurements was 
performed to analyze quantitative characteristics. F- and t-tests were performed. The Post 
Hoc Tests procedure with the Bonferroni correction was applied for paired comparisons. 
The 0.95 probability (95% confidence interval or p < 0.05) was taken as the confidence 
level. 
Results  
Purulent wounds formed in 48 hours (the initial point of data recording) and had classic 
signs of inflammation. Wound edges were necrotic, slightly hyperemic, and pale. The 
wound bed was moist, yellow-green and burgundy-bluish to black with areas of necrosis 
and fibrin overlay. There was a purulent exudate in a moderate amount from 0.5 to 1.0 
ml, yellow-green, hemorrhagic, turbid, with malodor. On experiment day 3 wounds in the 
control animals were characterized by purulent-necrotic inflammation with a destruction 
within the skin superficial muscle. In the control group purulent exudate persisted up to 
11-13 days. On day 3 Group 1 animals had wounds characterized by a pronounced 
exudative inflammation, with scaffold remains on its surface. By day 15 a dense 
secondary slough was formed in Groups 1 animals and the controls, with a zone of 
epithelialization when sloughing (by day 21 in the control group and by day 19 in Group 
1). It should be noted that the wound process occurred more favorably, with less 
pronounced symptoms of purulent inflammation in Group 1, as compared to the controls. 
On day 3 of the experiment, a whitish scaffold-based film was formed on the wound 
defect surface in Group 2. No secondary slough formed in animals of this Group, the 
wound rearrangement and epithelialization occurred by day 19 (Fig. 1).  
 



Fig. 1. Skin wound healing in an experiment. 
A decrease of the wound surface area was generally higher in Group 2 than in Group 1 
and the controls. For example, by day 19, it was 98.4±1.34% in Group 2 which is 
21.13±0.9 % and 6.25±0.31% (both p<0.05) more than in the controls and Group 1, 
respectively (Table 1).  
 
 
Table 1. Changes in the skin wound area. 
 Wound surface area (% decrease from baseline) 
Observation 
Day 

Control 
group 

Group 1 Group 2 

3 5.22 ±0.24* 19.6 ±4.6* 26.6 ±3.41* 
7 15.22 ±1.12* 33.06 ±2.4* 48.63 ±2.08* 
11 25.2 ±3.67* 47.95 ±1.78* 57.95 ±3.66* 
15 56.8 ±12.42 63.4 ±5.1* 82.15 ±6,71* 
19 77.27 ±2.24* 92.15 ±1.65* 98.4±1.34* 
21 95.64 ±3.88* 97.9 ±1.05*  

Note: *p <0.05 
The wound defect area was lower in Group 1 when compared with Group 1 and the 
controls. On observation day 11 it was 25.2 ± 3.67% in the control group, that is 1.95 
times less than in Group 1 (47.95 ±1.78, p<0.05).  
A histological examination of tissues, including the experimental wound, skin defect 
edges, the skin muscle and subcutaneous adipose tissue, demonstrated typical stages of 
necrosis and suppurative exudative inflammation. However, during the first week its 
severity varied in animals of different groups. A day later, changes in the tissues were 
typical and consisted of interstitial edema, hemorrhagic impregnation as a result of 
mechanical injury. Inflammation was the main pathomorphological phenomenon, with 
paravulnar tissues excessively infiltrated with white blood cells such as neutrophils, 
macrophages, lymphocytes and mast cells and all tissues swollen. The skin muscle 
structure nearby the defect was mainly maintained, however, there was fraying of fibers 
and swelling. Inflammatory infiltration appeared to be less intense in Groups 1 and 2 than 
in the controls, as confirmed by the morphometry (p<0.05, Table 2). In Group 2 animals 



there was an early formed torus demarcationis, separating a zone of irreversible damage 
(Fig. 2). At the wound bed there was tissue detritus, densely infiltrated with 
polymorphonuclear WBCs. The superficial dorsal muscles forming the defect bed were 
swollen within the wound bed, the endomysium diffusely infiltrated with neutrophilic 
granulocytes. There was a protrusion of swollen subcutaneous adipose tissue into the 
wound in animals of all groups. 
On day 7 of the experiment, the wound area in the control group was filled with a mass of 
granulation tissue penetrated by full-blooded blood vessels. There was a slough on the 
superficial wound part located between its edges, preventing the effective growth of the 
stratified epithelium regenerating from the edges. In Group 1 there were signs of the 
active granulation tissue formation. Its stroma consisted of thin chaotically arranged 
bundles of collagen fibers produced by connective tissue cells such as poorly 
differentiated fibroblasts. In addition, histiocytes and endotheliocytes were detected as 
part of thin-walled newly formed blood vessels. Also, there were single mast cells and 
lymphocytes. In Group 2 animals the granulation tissue was formed in place of the 
superficial muscle. There were single degrading muscle fibers, as well as newly formed 
blood vessels in its structure., Intact muscle fibers were visualized closer to the wound 
edges with minimal leukocyte infiltration and the swollen stroma. An epithelial layer 
actively grew from the wound edges. 

Figure 2. Histotopograms of wound skin defects. A – 1 day, control group; B - 1 day, 
group №1; C - 1 day, group №2; D - 7 day, control group; E - 7 day, group №1; F - 7 
day, group №2. 1 – defect area; 2 - wound edges; 3, 4 - superficial and deep spinal 
muscles; 5 - granulation tissue; 6 - slough; 7 - torus demarcationis; 8 - adipose tissue. 
Staining: hematoxylin and eosin. Scale bar - 2000 µm. 

 
The morphometry results (Table 2) demonstrated leukocyte infiltration above the muscle 
to be more intense in the controls than in Groups 1 and 2 (p = 0.004) on day 1. On day 7 



the leukocyte infiltration index was higher in all layers of the wound of Group 1 animals 
than in the control and Group 2 ones (p<0.001). 
Table 2. Leukocyte infiltration of the wound at different time points of observation. 
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Note: Skin muscle was examined to evaluate muscle tissue infiltration. 
A bacteriologic culture test of the wound exudate at the initial stage of the experiment 
demonstrated a polymicrobial content. Staphylococcus epidermidis, Staphylococcus 
aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterococcus faecalis, and 
Escherichia coli were grown. A rate of bacterial contamination was lowest in Group 2. 
For example, by 48 hours from the start of recording the experiment data, E.Coli was not 
detected in the wound treated with the use of the scaffold “CM” 2 (p<0.05), S. 
epidermidis and K.pneumoniae counts were minimal (p<0.05 ). In 96 hours, no E. 
faecalis was detected (p<0.05). Bacterial contamination was also lower in Group 1, when 
compared with the controls; however, there was no statistically significant difference in 
E. faecalis between the two groups (p = 0.13). In 168 hours, no bacterial growth was 
detected in the groups of animals treated with the scaffolds. In the control group, of 
K.pneumoniae and P.aeruginosa persisted during the abovementioned period (Table 3). 
 
Table 3. Bacterial contamination of the wound in dynamics. 

 



 
Discussion  
 Properties of the organic biodegradable scaffold “CM” in two modifications (1 and 2, 
respectively) were studied in a model of an infected skin wound. The scaffold is 
gelatin-based, which is a natural polypeptide, produced in collagen hydrolysis. 
Gelatin-based dressings have been widely used in the management of chronic skin 
wounds. Note that gelatin is biocompatible, easily biodegradable, non-immunogenic, as 



well as easily produced, available and cost-effective. Porous gelatin composites absorb 
wound exudate and retain moisture, thereby facilitating the process of wound healing. A 
gelatin base acts as a matrix for cell migration and provides mechanical and structural 
support for the growth of new tissue [17].  
 The disadvantage of using gelatin-based dressings in the treatment of chronic skin 
wounds is their low antimicrobial activity. The integration of antibacterial agents into a 
gelatin matrix, whose positive effect has been demonstrated in a number of clinical trials 
can possibly overcome this disadvantage. Despite this, developing, or existent antibiotic 
resistance can neutralize the effect of an antibiotic used.  
To date, the integration of non-specific antimicrobial medicinal components with diverse 
action into a wound dressing is considered as an important tool in the management of 
persistent wound infection [29, 30, 31]. Taking it into account, a combination of 
antimicrobial agents was incorporated into the scaffolds "CM", including both natural 
components such as herbal extracts of St. John's wort, sage, yarrow, and gentamicin, a 
broad-spectrum biosynthetic antibiotic. 
St. John's wort extract in vitro is reported to have a pronounced antimicrobial effect [32, 
33] against gram-positive bacteria [34, 35]. Some authors demonstrated a yarrow extract 
to possess good antioxidant properties, evident anti-fungal and bactericidal effects against 
B. cereus.  
A number of researchers have described the antibacterial activity of a yarrow extract 
against S. aureus [37, 38]. Team of authors provided the latest data on sage extract 
properties [44]. Essential oil and an alcohol solution of sage extract exhibit strong 
antibacterial and bacterial growth-inhibitory activity against both Gram(+) and Gram (-) 
bacteria. Bacillus cereus, Bacillus megaterium, Bacillus subtilis, E. faecalis, Listeria 
monocytogenes and Staphylococcus epidermidis have high sensitivity to different herbal 
agents including a sage extract. Sage essential oil has a significant growth-inhibitory 
effect on the of E. coli, Klebsiella oxytoca, K. pneumonia, Pseudomonas morgani, 
Salmonella enteritidis, and so on. In addition, a sage extract has evident antioxidant, 
antinociceptive and anti-inflammatory properties. Moreover, triterpenoids, oleanolic and 
ursolic acids [42, 43] have a growth-inhibitory activity against multidrug-resistant 
bacteria such as vancomycin-resistant enterococci, penicillin-resistant Streptococcus 
pneumonia, and methicillin-resistant S. aureus [44, 45, 46]. 
We studied properties of scaffolds “CM” 1 and 2 in a model of a polymicrobial infected 
wound. The wound microbial content was demonstrated in the experiment to be 
significantly lower in groups of animals treated with the scaffolds as compared to the 
controls. At the same time, there was a highest decrease in the microbial content in 
Groups 1 and 2 within the first 48 hours from the beginning of the experiment when 
scaffolds were in direct contact with wounds. In 168 hours since the data recording, 
K.pneumoniae and P.aeruginosa persisted in the control group, while no bacterial growth 
detected in cultures from Group 1 and 2 wound samples (Table 3). In general, the 
antibacterial effect of scaffolds was in moderate and profound in Groups 1 and 2, 
respectively. 
 That a physical examination of wounds in animals treated with scaffolds showed a more 
favorable course of the wound process was to be expected. For example, by days 3-5 
there were no signs of active inflammation in Groups 1 and 2, with the exudate being 
serous and hemorrhagic. On day 7 the wound defect area decreased by 48.63 ± 2.08% of 
the baseline in Group 2, with the value being 33.06 ± 2.4% in Group 1. The wound 
process demonstrated signs of a pronounced exudative inflammation up to 11-13 days in 
the control group. Wound edges were swollen and hyperemic with the presence of 



purulent exudate. By day 7 the wound area decreased by 15.22 ± 1.12% of the baseline. 
The duration of complete layer-by-layer wound healing was 21-22 days in the control 
group, and 19 days in the experimental groups.  
 Leukocyte infiltration was assessed in three areas such as above the muscle, in the 
muscle (which is the wound bed) and beneath the muscle based on full-thickness wound 
histotopograms. By day 7 it showed a two-fold decrease in wounds treated with the use of 
scaffold “CM” 2 as compared to the control group. The use of the scaffold “CM” 1 
resulted in increased leukocyte infiltration of the wound by day 7. Its value was higher 
than in the controls and Group 2, that gives evidence to a less intense inflammatory 
process and the end of exudating when passing to the third phase of an inflammatory 
response. 
 Scaffolds “CM” have demonstrated good performance in the treatment of infected skin 
wounds and can potentially be used as an all-purpose dressing for persistent, chronic 
infected skin wounds. The data obtained should be confirmed in non-clinical studies.  
 
Conclusions 
1. Scaffolds “CM” promote more rapid wound healing in the model of an infected skin 
wound. The duration of complete wound healing was 19 days in the experimental group, 
and 21-22 days in the control one. 
2. Scaffolds “CM” in vivo have a good antibacterial effect, against P. aeruginosa as well. 
3. Scaffolds “CM” can be potentially used as a tool to manage a wound infection in 
persistent, chronic skin wounds, as well as in those with a possibly high risk of infection. 
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