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Summary / preamble

[Caption: Here is a simplistic diagram of an argument-network. Real-world examples would
typically be larger, more interconnected, and not shaped like trees.]

Here are some of the concepts that will be touched upon in this post:

● Argument networks: Imagine rigorous and extensive argumentation being organized
into a network, where each node contains one "piece" of the argument. If you agree
with the contents of each node, you have agreed with every step of the argumentation
as a whole.

● Reviewer-assessment predictions: The techniques described in this post suppose
that we have systems that can make accurate predictions for how various human
reviewers will answer questions. Some questions could be aimed at ascertaining the
degree to which humans agree with the argumentation itself. Other questions could try
to ascertain the degree to which the argumentation fits various descriptions (e.g.
whether certain specific standards and rules are upheld). The systems that predict
what human reviewers will answer don't need to be perfect, but a certain minimum
level of accuracy and precision would be needed.

● Testing of reviewer-assessment predictions: A positive thing with predictions of
reviewer-assessments is that accuracy can be tested. However, there are some
security concerns relating to this.
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● Argument-network score-functions: Argument networks would receive a score. The
algorithm that calculates the score would take a variety of things into account. One of
the important factors would be the level of agreement that is predicted for the
individual nodes. A good score-function might forbid types of arguments, or ways of
presenting arguments, that make it easy to systematically fool human reviewers. It
could make it so that there are only a few "types" of arguments that are allowed, with
only one legal way of presenting each "type".

● Wiggle room (relative to score-function): Given some specific score-function, are
AIs able to make argument-networks that argue in favor of contradictory claims, in
such a way that both argument-networks get a high score? If so, that would indicate
that the score-function has wiggle room.

● Score-function exploration: Human operators may define a "space" of possible
score-functions, and get help from AIs to search within that space for score-functions
that have positive attributes (low wiggle room, etc). When there is wiggle room, AIs
should be incentivized to find examples that help demonstrate this.

● Wiggle room (relative to a "space" of score-functions): Imagine all the possible
score-functions in some "space". And then, imagine that we filter out score-functions,
so that we only are left with those that have low wiggle-room. Between these
functions, is it the same statements that can be argued for with high-scoring
argument-networks? Or are there some score-functions where "P≠NP" can be argued
for with a high-scoring argument-network, and "P=NP" cannot - while for some of the
other ones, it's the other way around?

Here are a few examples of topics that an argument-networks could be used to argue about:

1. Code behavior: Whether a given piece of code does what it's described as doing.
2. AI designs: Whether a given AI design has certain alignment-related properties.
3. Physical system behavior: Whether a given design for a physical machine would

work in accordance with a given description.
4. Claims about the world: Whether a given statement about the world is likely to be

true.

For the strategies outlined in this post, here are some of the underlying goals:

● Getting answers we can trust: We want to be able to get answers that we can trust,
even if the AGI-system doesn't care about telling the truth per se.

● Evaluating output: We want to be able to evaluate whether a given output from an
AGI-system does what we intend for it to do.

● Iterative increases in verification capacities: When we verify that output from an
AGI does what we want it to do, this could potentially create some kind of positive
feedback-loop. Output that is verified may give us capabilities that enable us to verify
output that we previously were unable to verify to our satisfaction.

● Failing visibly: The AIs should be rewarded if they are able to produce deceptive
argument-networks that get a high score. If they are able to "deceive" us, then they
should be incentivized to show that they are able to do that.

● Minimizing communication to operators: Direct evaluation of arguments by humans
could make it possible for a superintelligent AGI to somehow "trick" the operators. The
strategies described in this post wouldn't reduce this risk to 0, but the intention would
be to minimize it.



● Contingency plan: Suppose we have developed superintelligence but haven't
adequately solved alignment. If so, the techniques described here could potentially
help us in creating safe systems with the help of less safe systems.

● Additional alignment assurance: Even if we think we have succeeded with
alignment, the techniques described here could potentially be used as an additional
"layer" of alignment assurance.

The strategies I outline there are not intended for any current-day AI system. Rather they
would be intended for hypothetical future AGI-like systems that have superhuman abilities.

The techniques assume that the AIs that participate act in such a way as to maximize points. I
vaguely imagine some sort of search process for finding the AI-systems that earn the most
points. A potential failure mode could be if we get stuck at a local optimum, and don’t find any
systems that try earnestly to maximize points for every individual request they receive.

[Caption: There are resemblances between techniques outlined here and Alignment By Debate. But
there are also big differences. See more discussion of that here.]

Argument-networks
Me: Let’s temporarily assume that:

1. We have AGI-systems that can argue things to humans in such a way that the entire
argument can be split into “pieces”.

2. Although each “piece” may require for things to be explained, it is possible to review
each “piece” on its own.

3. None of the “pieces” are too overwhelming for smart humans to review.

https://docs.google.com/document/d/1J--v2wZe7pTYJdo0wNnNRH5cpr72RFRhFiA766XNagE/edit


4. We can get AGI-systems to try as well as they can to construct “argument-networks” that
are assigned a high score by a scoring-function.

5. We have software-programs that can predict how various humans are likely to respond
(when answering questions, evaluating arguments, interacting with pieces of code, etc).
They won’t make predictions with 100% certainty, and they may not always have a
prediction - but they tend to have good accuracy, and they avoid overconfidence.

That last assumption, about us having systems that can predict humans in an accurate way, is
of course a non-trivial assumption. We’ll discuss it a bit more later.

Imaginary friend: None of the assumptions you listed seem safe to me. But I’ll play along and
assume them now for the sake of argument.

Me: What we want to have produced are “argument-networks”.

Each node would contain one of the following:

● An assumption, which human reviewers can agree with or disagree with.
● An intermediate step, where the human reviewers can evaluate if the conclusion

seems to follow from the assumptions.

Imaginary friend: If the node is an intermediate step, what would it contain?

Me: The main content would be:

● Assumptions and conclusion: This is how different nodes in the network would be
“linked” together. The conclusions of some nodes are used as assumptions by other
nodes.

● Argumentation for why the conclusion follows from assumptions: The
argumentation is split into “pieces”. One “piece” could argue that a given conclusion
follows from some list of assumptions.

Both assumptions and conclusions are propositions. These propositions would be
represented in some format that allows for the following:

● Human interpretability: When presented to a human reviewer it should look much like a
sentence in natural language, or some other format that the human is familiar with.

● Concept clarification: When there are terms that need clarification, they should be
marked and explained.

● No syntactic ambiguity: If the proposition is shown in human language, then steps
should be taken to reduce ambiguity (clauses should be demarcated, the referent of
pronouns should be demarcated, sloppy language should not be allowed, and so on).

● Node linking: When the conclusion of one node is among the assumptions for another
node, then this forms a “link” between these nodes. Such “links” should be made explicit,



so that algorithms can make use of them. And there are other “links” that also should be
made explicit. For example, if the same term is used and defined the same way across
different nodes, then this should be demarcated.

[Caption: There is no real-world example of the kind of network I have in mind. But these
images from this article have a superficial and mild resemblance.]

Argumentation-pieces
Imaginary friend: You said that the argumentation in an argument-network is split into “pieces”,
with each node containing its own “piece”. But what might one such “piece” look like? What is it
that humans who evaluate arguments actually would be presented with?

Me: That would vary quite a bit.

I’ll try to give some examples below, so as to convey a rough idea of what I have in mind.

But the examples I’ll give are toy examples, and I hope you keep that in mind. Real-world
examples would be more rigorous, and maybe also more user friendly.

With real examples, reviewing just one node could maybe take a considerable amount of time,
even if that node covers just a small step of reasoning. Much time might be spent on explaining

https://writings.stephenwolfram.com/2020/09/the-empirical-metamathematics-of-euclid-and-beyond/


and clarifying terms, teaching the reviewer how various things are to be interpreted, and
double-checking if the reviewer has missed anything.

Anyway, let’s start with the examples. In this example, the reviewer is shown one step of logical
inference:





In the example above, the human is reviewing one step of logical inference, and asked if this
step of inference is in accordance with a given inference-rule. This would be one possible
approach for having humans review logical inference, but not the only one.

Another possible approach would be to ask reviewers whether they agree with certain
computational rules of inference. And these inference-rules would be presented in a
human-friendly format. Computational proofs could then be constructed based on these
computational inference-rules, without the reviewers having to affirm every step of inference!



Both the examples I’ve given so far have concerned themselves with logical inference. But this
would not always be the case. Here, for example, is an example that involves “code patterns”:





And here is another example that involves “code patterns”:

Before reviewing real nodes of a given "type", the reviewers should learn about how to review
nodes of that "type", and review a few test-nodes.

This is especially true for "types" of nodes that are less straightforward (e.g. ones that make use
of “code patterns”).



Anyway, let’s give another example of an “argument-piece”. Here is one that relates to number
theory:

This would be one small “piece” of a proof showing that for every prime number you can name,
there is always a higher one. LS1 and LS2 would also be referenced by other nodes (although
the abbreviations they are given might vary between nodes).

The examples I just gave don’t show the full scope of what argument-pieces might look like. But
hopefully they help you to sort of grok what I have in mind.



Imaginary friend: Several times you mentioned “human reviewers”. But I thought you didn’t
intend for humans to actually review the argument-trees?

Me: Well, we could imagine one of the following approaches:

1. Human reviewers review the nodes
2. AI-systems predict how human reviewers would review the nodes
3. Some mix that involves both #1 and #2

And what I envision is either #2 or #3.

Expressing epistemic status
When answering questions and evaluating arguments, human reviewers would not simply
answer “I agree” or “I disagree”. They could also be enabled to give answers and such as the
following:

● “It does seem that way, but it’s possible that I’m misunderstanding the question
somehow.”

● “When having a level of confidence similar to the level of confidence I have in this, I
would expect to probably not be wrong more than 1% of the time.”

● “It does seem to me that the answer is yes, and this seems almost as clear to me as can
be. But I don’t rule out completely that I could be overlooking something.”

It could also be possible to let users specify their level of confidence as being within some
range:



And reviewers could be asked to rank their relative confidence in various claims:

The reasons for asking these kinds of questions is two-fold:



1. If reviewers give nuanced information regarding their level of confidence, algorithms that
score argument-networks have more to work with.

2. Asking reviewers about their level of confidence could make them think things over more
carefully.

It would not be necessary that all reviewers are asked the questions in the same way. For
example, “Do you agree that [x]?” can be experienced as a leading question, and there may
often be less leading ways of asking the same thing.

Meta-questions about arguments
Imaginary friend: When an AI constructs an argument-network, what is to stop it from putting it
together wrongly?

That is to say: What if the argumentation in the argument-pieces is correct and high-quality, but
something else is wrong, such as the “linking” between nodes?

Me: There could be several types of mechanisms for this. But for now let me focus on just one,
which is to predict how humans reviewers would review various pieces of the network content.

Just like humans can be asked to evaluate arguments, they can also answer questions about
arguments. And if they are asked the right standardized questions, human reviewers can
evaluate whether an argument-network has been put together correctly.

And if we have computer systems that can predict human answers to questions that are directly
about the argumentation, then it shouldn’t be particularly harder to predict human answers to
meta-questions about the argumentation content (that help to establish if the argument-network
is put together correctly, and if rules for how argumentation should be presented are upheld).

Here are a few examples of types of questions that human reviewers could be asked, and
where AI-systems could make predictions about what reviewers would be likely to answer:

● “How closely, if at all, would you say the argument in box A fits the description in box B?”
● “Look over the argumentation in Box A and Box B. Which, if any, looks more rigorous

than the other?”
● “Would you describe box A as laying out 1 step of inference?”
● “Does the contents of box A look like it could be one step in an explanation of a visual

mathematical proof?”
● “Does the argument in box A have the statement in box B as its conclusion?”
● “Take a look at the list of assumptions in box A, and at the argument in box B. Are all the

assumptions that the argument in box B relies upon listed in Box A?”
● “Look at the arguments in Box A1 and Box A2. Then look at the arguments in Box B1

and B2. Which pair, if any, seems more structurally similar than the other?”
● “Proposition P1 makes use of the term ‘number‘, and a clarification of what is meant by

that term is given in Box B. After reading this clarification, do you feel as if there still is a



range of plausible interpretations for how to interpret that term? If yes, to which degree
would you say that which interpretation that is chosen affects the credence you put in
Proposition P1?”

● “Do you think the clarification that is given for “number” in Box A seems like a reasonable
way to use the word ‘number‘? Or does it seem to you as irregular, in such a way that it
is confusing to use the word ‘number‘ instead of something else?”

● “Does the content of Box A seem to you like something a smart human could write? Or
does the way it’s written indicate that it’s unlikely to have been written by a human?”

Scoring-function
Argument-networks would be given a score.

The process for calculating such a score would be complex, and I’ll not outline an algorithm
here. But I will outline some of the elements that algorithms that calculate score could include.

First of all, there would be node agreement. Is it predicted that reviewers will agree with the
assumptions and argument-pieces in the various nodes? If so, how confident are the reviewers
predicted to be? And how confident is the prediction-system about this prediction?

We may be especially interested in node agreement among reviewers who are harder to
fool. Some humans will be harder than others to “fool” (be that generally, or for
argument-networks that are within a given domain). And if we have systems that are good at
predicting human responses, those system could be used to determine who those people are
(since predictions can be made for how easy or hard it is to convince a given human of
internally inconsistent claims).

Also, we may be interested in correlations between how easy reviewers are to fool and
their tendency to agree with any given node. Maybe there are some nodes where most
reviewers are likely to agree, also among humans who are unusually hard to fool, but with an
unusual uptick in disagreement from those humans (e.g. with 1% of them disagreeing, while for
most nodes <0.1% of them tend to disagree).

The algorithm that calculates score could also take node content properties into account. The
individual “pieces” of the argumentation, what are they like?:

● Are there steps of inference that are implicit or sloppy? Or is it hard to see how the
reasoning could be made more clear and explicit?

● Are there ambiguous terms in use that aren’t clarified well?
● Do the argument-pieces all fall in under some common “pattern” (that is recognized to

usually not lead reviewers astray)?
● What domains are the argument-pieces related to? Are they all low-ambiguity domains

(such as mathematics, algorithms, etc)?
● Does the node content fall in under some pattern where humans tend to be at particular

risk of making certain specific cognitive errors?



● How cognitively demanding are the argument-pieces to evaluate (in terms of short term
memory, mental operations required, etc)?

● What type of reasoning will typically be involved in evaluating the node content?
(Syllogistic inference? 2D visualization? 3D visualization? Pattern recognition?)

● Is specialized technical knowledge required to evaluate the node content?

Assessing whether a specific node has a specific property might involve:

1. Predictions of human answers to meta-questions: For example, it would be possible
to show reviewers an example of a specific argument-pattern, and then ask whether the
argument shown in front of them is in accordance with that pattern. Or they could have
some “bad practice” be described to them, and then have some section of an argument
highlighted to them, and be asked if what they see seems to be an example of that “bad
practice”.

2. Functions that look for patterns in the node content: A capable AI will notice
patterns/properties of what constitutes good argumentation, and
patterns/regularities/properties that makes it so that humans more easily are fooled. And
for each of these properties, it would be able to construct functions that can detect it.

Another thing for a scoring-function to look at is network properties:

● How many assumptions are there?
● Is the network sparse, or is it deeply interconnected? That is to say: Are conclusions

supported by many paths through the network, starting from different assumptions? Or is
the network more like an unstable building, which can be collapsed by removing a few
pillars?

● Does the network rely on very long chains of reasoning, with ample opportunity to sneak
in error?

One possible approach could be roughly as follows:

1. Give every individual node a “score”, and assume % chance that the node is wrong
based on that.

2. Use various methods and heuristics to approximate the conditional dependencies, or the
lack thereof, between the correctness-probability of different nodes (for example: if two
nodes contain basically the same step of inference, but presented slightly differently,
then one of them being wrong indicates that the other one also is wrong)

3. Do Monte Carlo simulations, or run some algorithm that approximates what the result of
Monte Carlo simulations would be. For each “round” of Monte Carlo, look at the subset
of the nodes that are “correct”, and see if that subset is sufficient for the conclusion to
follow from the assumptions.

https://en.wikipedia.org/wiki/Monte_Carlo_method


Argument-piece templates
It would be possible for a scoring-function to be quite restrictive, and give a score of 0 to any
argument-network that breaks any of the requirements that are imposed.

And when deciding what kind of argumentation that is allowed in an argument-network, it may
be better to ask “what should we allow?” than “what should we forbid?”.

One approach would be to have some limited list of argument-piece templates. Each template
would represent one “type” of argument, and describe exactly how arguments of that “type”
should be presented. A strict score-function could then make it so that the content of all nodes is
in accordance with one of the templates from the list.

Here is a simplistic toy example of a “template”:

[entity reference] is to be categorized as [category reference 1]
All entities that are to be categorized as [category reference 1] are also to be
categorized as [category referenced 2]
Therefore, [entity reference] is to be categorized as [category reference 2]

And here is a simplistic example of an instance of such a template:

Socrates is to be categorized as human
All entities that are to be categorized as human are also to be categorized as mortal
Therefore, Socrates is to be categorized as mortal

In the example above, what I want you to notice is that a lot of the content is static. All that can
be varied between templates are certain names that are filled into certain specific spots. Not all
templates would be this simple, but all templates would be quite restrictive in terms of what can
be expressed.

As rules of thumb:
● The fewer templates that are allowed, the better.
● The more restrictive each template is in terms of how an argument can be presented, the

better.
● It’s better if all templates are “general”, and aren’t exclusively used for argument-steps

having to do with some specific and narrow topic.

Wiggle room and failing visibly
Imagine that we request output from an AI, and that this output…

● Must fulfill certain requirements in order to be accepted (e.g. “it must be a list of
integers, and the product of these must be equal to 97”)

● Can be seen as arguing for some specific claim (e.g. “97 is not a prime number”)



If there is no wiggle room, then the AI cannot produce different outputs that (1) pass whichever
requirements we have and (2) argue for contradictory claims.

The concept of wiggle room is a general one, but let us now consider it in the context of
argument-network scores.

A high score is supposed to indicate that an argument-network is worth trusting. And if it
receives a low score, then that is supposed to indicate that it isn’t reliable:

But the job of the AI is not to tell the truth. Rather, it’s optimized to seek a high score.

Suppose that the AI earnestly tries to maximize score for every individual request it’s given. If
so, it will try to get as high a score as it can when tasked to make an argument-network that
argues “x”. And it will do an equally earnest job when tasked to make an argument-network that
argues “not x”.

And this would help us to fail visibly.

Suppose the AI that makes argument-networks is able to convince us of anything. Or maybe it’s
able to “cheat” somehow (e.g. in how it puts together the network). If so, it should be able to
make high-scoring argument-networks that argue for mutually contradicting claims:



But if things work as they should, and the scoring-function is well calibrated, then the AI would
not be able to convince us of mutually contradictory claims:

Imaginary friend: And how would you ensure that the AI-system “earnestly tries to maximize
score for every individual request it’s given”?

Me: That I leave as an exercise to the reader🙃

AI-help with adjusting scoring-function

Imaginary friend: I’m inclined to agree with this excerpt from Eliezer:

Human operators are fallible, breakable, and manipulable. Human raters make
systematic errors - regular, compactly describable, predictable errors.

Me: I also more or less agree with this.

In many ways humans are predictable. And some of the ways that we are predictable can be
summarized compactly.

https://www.lesswrong.com/posts/uMQ3cqWDPHhjtiesc/agi-ruin-a-list-of-lethalities


I’m reminded a bit of magicians. Magicians are able to reliably trick humans in non-random ways.
And I’m sometimes surprised when I see how good some of their tricks are. Even professional
magicians can sometimes be fooled by other magicians.

There is a huge number of possible tricks a magician can do, but the number of general techniques
that these tricks are based on is much smaller. It would quickly become much harder to trick us if we
choose good rules for what the magician is and isn’t allowed to do:

● “You want to put the ball in a cup? Sure, but use this specific ball and this specific cup that we
provide. And you are only allowed to use one hand.”

● “Everything you do will be filmed in slow motion, from several angles. And the footage will be
looked over afterwards.”

● “You want me to pick a card? Actually cards are not allowed.”
● “You wonder what’s in my left shoe? Well, that question would only be allowed if you specified

beforehand that you might ask it.”
● Etc, etc

Humans are often predictable. But this doesn’t just apply to our tendency to make mistakes. It also
applies to our tendency to get things right.

A superintelligent AI could be able to understand us better than we understand ourselves. Which is a
problem if it wants to trick us. But it might be an advantage if it wants us to not be tricked.

Imaginary friend: But if it seeks to maximize points for the argument-network that it makes,
then why would it want the reviewers to not be tricked?

https://www.youtube.com/watch?v=0NcAD_0ODns


Me: Well, that AI - the AI that is asked to construct a high-scoring argument-network - would be
incentivized to include deceptive argumentation if that results in a higher score.

But we could have other AIs that help us in coming up with score-functions. And the AIs that do
that could receive a high or low score based on how well those scoring-functions do.

Imaginary friend: And how would you determine “how well those scoring-functions do”?

Me: We could approximate this by getting the AIs to generate argument-networks that argue for
and against a variety or claims, and then looking at:

1. Wiggle room: The degree to which the AIs are able to generate high-scoring
argument-networks that argue for mutually contradicting claims.

2. Reach: The range of propositions where some AI are able to generate a high-scoring
argument-network arguing either “it is the case that [x]” or “it is not the case that [x]”.

Btw, it may be that in order to minimize wiggle room, some reach must be sacrificed.

For example, if an argument-network only is allowed to use low-ambiguity terms, then this will
presumably decrease reach, but it might be necessary in order to decrease wiggle room.

We could imagine a scenario low wiggle room is achievable for low-ambiguity fields such as
mathematics and computer science, but hard to achieve outside of these domains (without
increasing wiggle room).

Limiting AI-expressivity when they propose score-functions
Imaginary friend: If I want you to believe something, and I am constructing the scoring-function
for an argument-network, I could make it so that argument-networks only gets a high score
when they argue for what I want you to believe.

To put it crudely, I think what you envision is for scoring-functions to achieve low wiggle-room by
being all like:

if argumentation is rigorous and not misleading
then return high score
else return low score

But they could also achieve low wiggle room by something that’s more like the following:

if argument-network argues for conclusions I like
then return high score
else return low score



Do you have any mechanisms in mind for dealing with this?

Me: I do.

First off, we would not let the AIs propose score-functions freely. Rather, we would restrict the
“space” of scoring-functions that can be proposed.

How we restrict the functions that can be proposed would be up to whoever designs and
implements the “game mechanics” for interacting with the AIs. But one possible approach would
be to use function builders, and only allow functions that can be made with this “builder”.

What function-builders look like could vary on a case-by-case basis. A function-builder could be
complex, and allow functions to be constructed through a variety of operations (various types of
snippets that can be added and combined according to various rules). But more simple and
restrictive function-builders would also be possible (e.g. where all that can be done is to choose
the values of a few parameters in an otherwise pre-defined function).

Anyway, enough about function-builders. I shouldn’t get too caught up in the practical details
here. The main point is that the AIs that proposed score-functions would be limited in terms of
the functions they could propose.

Here are some examples of ways that the “space” of possible score-functons could be limited:

Only allowing questions from pre-determined list

When calculating the score of a node, one thing we may allow the algorithm to take into account is
what human reviewers are predicted to answer to questions about the node content.

This may help us find out things such as the following:

● Whether reviewers perceive the node content to contain clear argumentation
● Whether the reviewer perceives the node content as following some specific argument template
● Whether the reviewer perceives the terms used in the node content as being open to

interpretation

And these kinds of things could be an important component of how a scoring-function calculates score.

But if the AIs that make score-functions can choose questions freely, and then later choose freely how
the answers affect score - well, that would make it possible to tailor the score-function so as to favor
specific conclusions. A simplistic example of this could be as follows:

● The AI wants high scores to be given to argument-networks that argue that P=NP.
● For the content of each node, it predicts reviewer responses to “Is it concluded here that

P≠NP?”, and subtracts points if the answer is predicted to be yes.

One way to make this kind of malpractice more difficult would be to only allow questions from some



pre-specified list that we provide. That way, the score-function cannot take into account what
reviewers are predicted to answer to “Is it concluded here that P≠NP?”, since that question is not
included in the pre-specified list.

Restriction of meta-questions about node content based on meta-questions about those
meta-questions

As mentioned, we may want to allow the AI to predict what reviewers will answer to meta-questions
about node content, but only if those meta-questions are from some pre-specified list. But what if no
such pre-specified list exists? Or maybe we have a list, but it isn’t good enough?

One solution then could be to allow the AI that proposes score-functions to come up with its own
meta-questions, but to have whether a meta-question is allowed be conditional upon on what
human reviewers are predicted to answer to meta-questions about those meta-questions.

This makes it so that questions where we predict what humans reviewers will answer can be at 3
different “levels”:

Ground-level questions (questions about argument/assumption)

If the node contains the assumption “4 is a prime number”, then an example of a ground-level
question could be “Do you agree with this statement?”.

Ground-level questions would be used to ascertain whether the reviewers are likely to agree
with the argumentation and assumptions that are contained in the argument-network.

1st-level meta-question (question having to do with question about ground-level
question)

If the node contains the assumption “4 is a prime number”, then an example of a 1st-level
meta-question could be “Does it seem clear to you how this statement should be interpreted?”.

1st-level meta-questions could be thought of as a way to assess whether the argument-content
in an argument-network meets various standards/requirements.

2nd-level meta-question (question about 1st-level meta-question)

If a 1st-level meta-question is “Does it seem clear to you how this statement should be
interpreted?”, then a 2nd-level meta-question about that meta-question could be “Does that
question seem to you as if it is targeted towards some relatively narrow domain or topic?”.

2nd-level meta-questions could be thought of as a way to assess whether the 1st-level
meta-questions used by a score-function meet various specific standards/requirements.



(We could imagine 3rd-level meta-question as well, but I’ll stop here.)

Keep in mind that it’s possible for a question to reference various pieces of content (which are shown
along with the question). For example: If a meta-question is meant to help us evaluate if some specific
requirement is met, we can write a description that explains this requirement, and have the question
reference that description.

Requiring meta-questions that AIs come up with to be ranked favorably by human reviewers
when compared to meta-questions from some predefined list

As mentioned earlier, we could restrict which 1st-level meta-questions a score-function is allowed to
use based on what human reviewers are predicted to answer to various specific 2nd-level
meta-questions about those 1st-level meta-questions.

One possible variant of this technique is to have 2nd-level meta-questions that asks the reviewer to
compare two 1st-level meta-questions against each other (e.g. asking which 1st-level meta-question, if
any, that seems most in line with some specific description that is referenced).



There are various qualities that we could be interested in comparing when ranking 1st-level
meta-questions against each other. Here are a few examples:

● “Which question, if any, seems least likely to be tailored towards favoring specific answers to
specific questions?”

● “Which question, if any, seems least open to interpretation?”
● “Which question, if any, seems most likely to help ascertain whether good norms of

argumentation are followed?”
● “Which question, if any, seems most assured to be relevant to a wide range of arguments within

a wide range of domains?”

We could imagine various possible strategies that involve 1st-level meta-questions being ranked based
on 2nd-level meta-questions. Here is one example:

1. We start out with a list of 1st-level meta-questions.
2. We also start out with some 2nd-level meta-questions where reviewers are asked to compare

1st-level meta-questions (based on ambiguity, domain-specificity, simplicity, etc).
3. The AI is allowed to come up with new 1st-level meta-questions that aren’t in the pre-specified

list.
4. When the AI comes up with new 1st-level meta-questions, predictions are made by an external

system for how human reviewers would rank those questions against the questions in the
pre-specified list.

5. For any 1st-level meta-question the AI comes up with, it may or not be allowed to use those
questions in scoring-functions that it constructs. Whether it is allowed or not depends on how
they rank against the questions in the pre-specified ones.

Limiting node properties

A node property is more or less any parameter that can be calculated for a node, and later made use of
when calculating score.

We covered one way to establish a node property, which is to have an external system predict what
human reviewers are likely to answer to certain specific questions relating to the node content.

There could be other methods of establishing node properties as well. But any method would need to
pass certain requirements in order to be accepted.

Info access of subroutines

When we restrict the score-functions that can be proposed, we may provide a “skeleton” function. This
function may have some finished code that is pre-specified, while other sections of the code will need
to be constructed by the AI (even these sections could not be written in free-form, but within the limits
of what the “function-builder” allows).



Different subroutines within the “skeleton” may have different responsibilities, such as for example:

● Determining various “node properties”
● Calculating score for individual nodes
● Calculating score for network as a whole

These subroutines should not get access to more data from the argument-network than they need.

For example, a subroutine that calculates the score of an individual node doesn’t need to have access
to the entire argument-network. And a subroutine that calculates the score of the network as a whole
doesn’t need access to the internals of individual nodes (it doesn’t even need to be told what specific
topic the argument-network is about).

And the subroutines that determine score for individual nodes - well, they don’t necessarily need to get
access to the actual content of whichever node they are scoring. It might for example suffice that they
are told what template the content is based upon, what answers that are predicted from reviewers to
certain specific questions about the node content, etc.

Source code minimization

Having to minimize the amount of source code makes it harder to add in “trickery”. Especially if this
“trickery” only is to affect score in rare cases, and otherwise make no difference no way or the other.

So source code length could be one of the factors that is taken into account when scoring a
score-function. And there could be upper limits to the amount of source-code that is allowed (both for
the score-function as a whole, and for various specific subroutines).

Different types of wiggle room
Me: As mentioned, different AI-systems could be given different tasks. For example:

● Some AI-systems may be tasked to come up with a high-scoring argument-network
(which score highly according to certain criteria)

● Other AI-systems may be tasked to come up with scoring-functions (which score highly
according to according to certain criteria)

When we have talked about wiggle room so far, we have talked about wiggle room for the AIs
that come up with argument-networks that will be scored against a specific scoring-function. But
that’s just one type of wiggle room.

Here are some examples of different types of wiggle room:

Wiggle room relative to specific scoring-function



This kind of wiggle room can be demonstrated as follows:

1. You start out with a pre-specified scoring-function (for scoring argument-networks)
2. You are tasked to make a high-scoring argument-network arguing “x”
3. You are also tasked to make a high-scoring argument-network arguing “not x”
4. You succeed at both #2 and #3

Wiggle room relative to specific score-function-builder

This kind of wiggle room could be demonstrated as follows:

1. You are tasked with making score-functions for scoring argument-networks
2. These scoring-functions are to be made using a specific function-builder (which restricts

the “space” of scoring-functions that it’s possible to make)
3. Score-functions are scored based on a variety of factors. For example, if a score-function

has high wiggle-room it will get a lower score.
4. You are tasked to make a high-scoring scoring-function, with the requirement that for this

scoring-function it’s possible to make high-scoring argument-networks that argue “x”
5. You are tasked to make a high-scoring scoring-function, with the requirement that for this

scoring-function it’s possible to make high-scoring argument-networks that argue “not x”
6. You succeed at both #4 and #5

If humans define a score-function-builder, and wiggle room is low relative to that
score-function-builder, then that is a positive sign.

Wiggle room relative to a builder for making score-function-builders

As mentioned, a score-function-builder would be a function-builder for making score-functions.
And it defines a “space” of possible score-functions.

But maybe we are unsure about exactly which kinds of scoring-functions we want to allow:

● How strict should we be in terms of maximum source code length?
● Do we have guidelines we want to enforce for how the score of the network as a whole

can be calculated, given the scores that have been assigned to individual nodes? Do we
maybe even have a specific algorithm in mind? Or maybe there are a few specific
algorithms we have in mind, and we’re not sure which would be best?

● Do we have a specific list of templates that we want every “argument-piece” to adhere to?
If so, do we want all of those templates to be allowed, or only some of them?

● Do we maybe want the AI to be able to come up with its own templates? If so, what kinds
of requirements would these templates need to pass (in terms of what reviewers are
predicted to answer to meta-questions and so on)?

● Etc, etc



In other words: There are various different areas where we can be “strict”, and we are unsure of
how strict we should be in each area.

One thing we could do would be to define a function-builder that itself makes
score-function-builders. The intention would be that any score-function-builder that can be made
with this score-function-builder-builder seems to us like it maybe could be a good
score-function-builder.

So what is wiggle room when it’s relative to this kind of score-function-builder-builder? Well, it
comes down to the “space” of possible score-functions that can be generated indirectly from this
score-function-builder-builder (by first generating a score-function-builder). Are there
contradictory argument-networks where each of them would be assigned a high score by at least
one of the score-functions from that “space”?

If score-function-builder-builder makes it possible to build score-function-builders that are strict
along different dimensions from each other, and wiggle room relative to this
score-function-builder-builder is low, then that could be a good sign. It might indicate that there
are multiple assurances - that there is more than just one mechanism that prevents “bad”
argument-networks from getting a high score.

Adversarial network-extensions
Me: We could imagine giving an AI the following challenge:

1. Receive an argument-network that another AI has constructed as input
2. Construct its own argument-network (and receive a high score for this

argument-network)
3. Merge the two argument-networks (in such a way that nodes with identical content

become the same node)
4. Have the resulting network contain high-scoring nodes with mutually contradictory

conclusions (where at least 1 of those nodes was in the argument-network that was
received as input)

This process can be recursive. That is to say, the network constructed in #2 can be received as
input by another AI that is given this same type of challenge.

Feasibility of splitting arguments into human-digestible “pieces”
Imaginary friend: You talk about splitting arguments into “pieces”. And this reminds me a bit
about children who keep asking “why?”.

“You have to go to bed”
“Why?”



“Because it’s nighttime.”
“Why?”
“Because it’s past sundown”
“Why?”
“Because Earth is spinning around the sun”
“Why?”

When children ask “why”-question, we rarely give precise and detailed answers. And the
children will often not notice that.

In fact, it would be hard to give precise answers even if we tried. Answers to these kinds of
questions typically branch off in lots of directions, as there is a lot we would need to explain. But
when we talk or write, we can only go down one branch at a time.

Precise logical inference is done one step at a time. But one claim involved in one step of
inference might reference lots of concepts that we’re not familiar with. So it may take a huge
amount of time to understand just that one step of reasoning, or even just one statement.

As humans our minds are very limited. We have very little short term memory, we can’t visualize
higher-dimensional geometries, etc. So sometimes we may simply not be able to follow an
argument, despite attempts at breaking it into tiny “pieces”.

Me: Couldn’t have said it better myself.

I should make it clear that I don’t see the strategies I describe in this post as guaranteed to be
feasible. And the points you raise here help explain why.

But my gut feeling is one of cautious optimism.

Keep in mind that there often will be many ways to argue one thing (different chains of
inference, different concepts and abstractions that all are valid, etc). If a score-function works as
it should, then the AI would be incentivized to search for explanations where every step can be
understood by a smart human.



Even if hard steps are involved when the AI comes up with some answer, explaining those steps
is not necessarily necessary in order to argue robustly that the answer is correct. There are
often lots of different ways for showing “indirectly” why something must be the case.

For example, if an AI-system wanted to make an argument-network that argues in favor of The
Pythagorean Theorem, it wouldn’t necessarily need to explain any mathematical proof of The
Pythagorean Theorem. Instead it could:

● Construct “theorem-provers'' (be that relatively general-purpose theorem-provers, or
theorem-provers that are specialized towards certain narrow types of mathematical
statement,or both).

● Argue that these “theorem-provers” can be trusted to work in a certain way given certain
inputs.

As humans we can make computer-programs that do things we are unable to do by ourselves.
The principles that enable us to do this - well, they don’t always allow for robust assurances, but
often they do.

I suspect a common technique in many argument-networks could be to:

● Construct computer programs
● Argue that certain conclusions should be drawn if those computer programs have certain

specific outputs when given certain specific inputs



The argument-network would not necessarily need to have nodes that explain every single line
of code, but through a variety of techniques it would need to argue robustly that the code does
what it’s purported to do.

Imaginary friend: Do you have any comments on this excerpt from the post Rant on Problem
Factorization for Alignment?

Me: Here are some comments:

● I’m not surprised: I’m not surprised by that result (presuming it’s conveyed correctly).
But I also wouldn’t have been surprised by results that were significantly better than this.

● Argument-networks don’t necessarily need to be efficient: If some piece of code is
explained in an argument-network, it could be that having humans review all the nodes
that help explain that piece of code (arguing that the code does what it’s purported to do)
would be orders of magnitude less efficient than it would be for a human to write that
code himself/herself. Typically, actual real-life human reviewers will either review 0
nodes or some small fraction of the nodes.

● Reviewing one node may often take more than 5 minutes: When reviewing if
something is the case, just understanding the question and the terms that are used may
often take more than 5 minutes. And when reviewing nodes, people should take care to

https://www.lesswrong.com/s/TLSzP4xP42PPBctgw/p/tmuFmHuyb4eWmPXz8
https://www.lesswrong.com/s/TLSzP4xP42PPBctgw/p/tmuFmHuyb4eWmPXz8


make sure they understand things correctly, think things over several times, and so on.
The way I imagine it, it may sometimes take 30-60 minutes for an actual reviewer to
review a node (or maybe even more), even though that node only does one fairly small
step of reasoning.

● The average reviewer is not what matters: A score-function need not care about what
the average person thinks. Nor does it need to care about the average student at
Harvard, the average person who works with AI alignment, the average person at
DeepMind, or the average person with 135+ IQ. Suppose that some subset of reviewers
are deemed much harder to convince of contradictory claims compared to the rest (and
not just because they always answer “I don’t know”). If so, the scoring-function can focus
on that subset of reviewers when scoring the argument-network. That being said, if the
kind of person that the scoring-function cares about is too small, then that might make it
harder to test the accuracy of the systems that predict human responses.

● It may be sufficient for a very small subset of arguments to be viable as
argument-networks: When arguing that something is the case, there are lots of ways to
do that. Some may contain pieces that aren’t sufficiently human-digestible. Some may
require types of arguments that too often lead humans astray. Some may contain pieces
where it’s hard to reliably predict what human reviewers will respond. Due to these kinds
of restrictions, it may be the case that converting arguments into a viable
argument-network typically doesn’t work. But if it works for some small fraction of
arguments, that might be sufficient.

Imaginary friend: So argument-networks don’t necessarily need to be efficient. And it may be
sufficient for a very small subset of arguments to be viable as argument-networks.

It doesn’t seem like we should rely on this strategy working out...

Me: I agree. But it could be explored in parallel with other approaches.

Bets as a way to save computational resources
Me: Something that could be possible for AIs to do would be to make bets on the score that
they could get, or other AIs would be able to get, if tasked to construct an argument-network
that argues for some specific claim(“I bet with there is a 99.97+% probability that I would be able
to make an argument-network that gets a score of 88.2+%”).

These bets would need to be incentivized in such a way that it doesn’t pay off to be
overconfident. It would be possible to have game mechanics where AIs compete in a zero-sum
game, and each AI can make counter-bets against the other.

One point of doing bets would be to save computational resources. And another point would
be to try to answer questions that may be infeasible to answer by brute force. For example,
if some “space” of possible scoring-functions has been defined, it’s hard to know which
scoring-function within that “space” that has the least “wiggle room”. But it would be possible for



AIs to be incentivized to try to find the best one, and then they could make bets for how likely
they think it is that the other AI is able to find a scoring-function that performs significantly better.

Bets can be made on the outcome of a process, but it could also be possible to make bets on
steps that are part of a larger process. For example, suppose that a process has sub-steps that
involve predicting human responses. If so, it would be possible to make system-calls to systems
that make rough estimates of what those predictions would be if more compute was spent so as
to make a more precise prediction (“I predict at least x% chance that process P would assign at
least y% chance to the answer being either A or B”).

Predicting human evaluations
Imaginary friend: Early in this post, you asked me to temporarily assume the following:

“We have software-programs that can predict how various humans are likely to respond
to questions, evaluate arguments, interact with pieces of code, etc.”

You went on to say that you didn’t presume that they would have 100% certainty, or that they
always would have a prediction. But you did presume that they wouldn’t be overconfident, and
yet confident enough often enough to be useful.

I share your assumption that such software-programs probably are possible. Indeed, one worry
about misaligned superintelligent AGIs is that they might understand us all too well. But do you
think it’s probable for us to obtain such programs in time to use them?

Me: I’m not sure, but I do feel somewhat optimistic.

One thing to consider is that a human answering a question or doing other forms of evaluation
can be thought of as an experiment. Which means that we can test how accurate any given
system is at predicting human evaluations.

The strategies in this post are agnostic in terms of how we predict human evaluations. But they
rely on us being able to do it somehow.

One challenge is that when testing the accuracy of a system that predicts human responses,
that will presumably involve showing the content to humans - but we may be hesitant towards
letting the AI freely come up with content that is shown to actual human reviewers. In other
words: among the “space” of predictions that are made by the prediction-system we want to
test, there may be large sections of that “space” where we are unwilling to carry out
experiments.

In order to address this problem, I have certain techniques in mind, which I refer to as
Bayes-games. I have an addendum to this post where I write about Bayes-games, and I also
plan to write more about Bayes-games in the future.



Something to keep in mind is that we need not restrict ourselves to one method for
predicting human responses! It’s possible to have different systems that predict human
responses, based on different architectures and principles. And we could choose to only trust
predictions in cases where all the different systems are making converging predictions.

Having actual humans review node content
A worry when interacting with superintelligent AGI systems is that they could “trick” or somehow
manipulate human operators. And the more “bandwidth” they have for interacting with human
operators, the more realistic that might become.

With a certain disadvantage in pieces, even a maximally good chess-player will not be able to
beat a mediocre player. And similarly, maybe there is nothing that an AI could say that would
enable it to escape its “confinement” or otherwise cause great harm (especially if it is limited in
terms of how much it can say). But we don’t know quite how “hackable” we are, and I’d think it
best to err on the side of being too prudent.

When dealing with argument-networks, an advisable practice (especially in the beginning) could
be for the content of the nodes to be obscured by default. Meaning that the human operators by
default would be unable to see the actual node content.

However, they might be able to see info about the node content:

Even if we choose to have nodes obscured “by default”, we may sometimes see it necessary for
actual humans to review nodes (one reason being that we may need to test the accuracy of the
systems that predict what human reviewers would answer). Here are some policies that could
help reduce risks associated with this:



● Have people who review nodes be closed off from AI operators and from society:
Risks associated with human reviewers being manipulated or “tricked” is lower if those
humans cannot influence how events unfold. So it would be a possibility to have the
human reviewers work closed off somewhere, without access to the internet, and without
any high-bandwidth communication with the people who operate the AI-system. They
would not need to be closed off for the rest of their lives, but for some limited period of
time (where superintelligence has been developed or seems like it could be right around
the corner, but robust alignment isn’t yet in place).

● Start by reviewing only nodes that seem more safe: Nodes that don’t contain visuals
may be safer than nodes that contain only text. Nodes where the content seems
innocuous (e.g. only containing math) may be safer than content that concerns itself with
more controversial topics. Judging whether a node seems to have innocuous content
could be done with the help of various methods and systems, with each of them being
able to “veto”.

● To the degree possible, test the accuracy of prediction-systems by reviewing
human-made nodes: When testing the prediction accuracy of systems that predict
human assessments, we can also restrict ourselves to have the human review nodes
that are based on human-produced arguments. This is a rule that potentially could be
practiced strictly in the beginning, and then more and more exceptions could be made
with time (as we get more and more “verified” capabilities that help us assess risk).

Btw, keep in mind that the process of generating these networks can be broken into several
steps (and those steps can again be broken into smaller steps):

● Coming up with the content of the argumentation
● Breaking and translating argumentation into “pieces”, and constructing an

argument-network from those “pieces”
● Obfuscating nodes
● Making predictions regarding how human evaluators will evaluate a given node

It’s possible to have one system do all of those things, but it may be better to have different
systems do different things. In cases where argument-nodes are obfuscated, the systems that
construct argumentation don’t need to be told that argument-nodes will be obfuscated.

Iterating alignment-capabilities step by step
Me: One of the earlier “strategies” when dealing with a superhuman AGI-system could be
something like this:

1. Instruct the AI to try making new AGI-systems based on different
alignment-methodologies (some methodologies we suggest ourselves, and others where
we are less specific about methodology).

2. Inform the AI that when doing #1, it needs to show carefully step-by-step why those
solutions are likely to do what we want them to do.



3. Have a separate system obfuscating argument-nodes.
4. Don’t actually look at the arguments, and don’t look at any of the code that is produced

(although specialized computer-programs can check whether the code that is produced
has various properties).

5. Run the AGI-systems that were produced (on separate computers).
6. As new requests are made, give them to both the original AGI-system and the new

AGI-systems.
7. See if the different AGI-systems, which are based on different architectures and

alignment-methodologies, produce converging output (or if they give answers that
contradict each other).

Another strategy might go as follows:

1. Request an AGI-system to output source code for an “aligned AGI” (or some other
similar request, akin to e.g. “an AGI that answers requests as honestly as it can, and
does not try to hack itself out or manipulate operators”).

2. Along the request above, the AGI is to also produce an argument-network, which argues
that the output that is provided insofar as feasible matches with what was requested.
The better this argument-network scores, the better.

3. Don’t look at the source code that is outputted, and don’t look at the content of the
argument-network either.

4. Run the new AGI-system (on separate and closed-off hardware), and use it as one
AGI-system in a “council” of AGI-systems.

5. Don’t give any of the AGI-systems in the “council” any opportunity to communicate with
humans, except for ways that are very restricted and low-bandwidth.

6. See if the AGI-systems in the “council” produce converging output, or if they give
answers that are mutually contradictory.

You might think:

“But shouldn’t we look at the code, and look at the arguments provided by the AGI?”

And my answer would be:

“Yes, we should, at some point. But before we start doing that we should do less risky
things that that we can do to make the system safer.”

If we have a system that FOOMs, this could be an intermediate step on the path towards a more
assuredly aligned AGI-system.

In fact, all of the strategies I’ve outlined in this post would be intermediate steps towards a
system that’s more robustly aligned.

https://www.lesswrong.com/tag/intelligence-explosion


For example: So far I’ve talked about predicting human responses. But it may be advantageous
to predict the responses of idealized humans. Hypothetical humans who…

● have more short term memory
● exhibit less cognitive biases
● are less prone to optical illusions
● are more cognitively reflective
● etc, etc

But my thinking is that we could start out with predicting the responses of normal humans, and
then later expand the system to also predict the responses of humans that are idealized in
terms of intelligence and rationality.

And at some even later step, maybe we also are interested in predicting the responses of
humans that are “idealized” in a moral sense (emotional empathy, cognitive empathy,
impartiality, and so on).

For example, imagine if we could access the experiences of other beings as “memories”. Not
just humans, but also animals, including wild animals. How might that make us think about
various moral issues?

CEV would involve predicting what we as humans would think if we “knew more, thought faster,
were more the people we wished we were, had grown up farther together”. And I think there is a
lot of merit to that kind of thinking.

But for now I think it’s best if I focus on earlier steps. Should things turn out in such a way that
those steps are used and turn out to be successful…

Imaginary friend: If.

Me: …then maybe they could be part of a pathway towards bigger and better things.

Addendum: Bayes-games
One way to obtain accurate predictions could be through the use of Bayes-games.

In these games, AIs would compete against each other in a zero-sum game, competing to make
accurate experimental predictions. These predictions that AIs make could be seen as “bets”,
and when making such “bets” they would express their level of confidence.

More confident bets would lead to more points being earned when they are right, but also more
points being awarded when they are wrong. Points would be awarded in such a way that
confidence is rewarded but overconfidence is heavily disincentivized.

https://en.wikipedia.org/wiki/Cognitive_reflection_test
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There is a variety of types of experiments that could be covered by a Bayes-game. But there is
one type of experiment that would be of particular interest: Namely asking human questions,
and seeing what the humans answer.

For example, the humans could be presented with the content of argument-nodes, and asked
questions about the content they’re shown. And the AIs in a Bayes-game could consider this as
an experiment, and make bets on what humans will answer (based on info they are given about
the humans in question).

There would be three possible “modes” for a Bayes-game:

1. Specific predictions: This is the most simple and straightforward type of Bayes-game.
The AIs would make specific experimental predictions about specific experiments, and
then they would make “bets” on these predictions where they describe their level of
confidence. And each AI could point out bets where they think the other AI has made a
prediction that’s wrong or over-confident.

2. Prediction-functions: Here, instead of making specific predictions on specific
experiments, they would output prediction-functions. Each prediction-function would be
specialized towards making predictions for experiments that are within some “space” of
possible experiments. The AIs would make bets on how well prediction-functions are
likely to perform, and the AIs could try to pick out experiments where they think the
prediction-functions made by the other AI are likely to lose points.

3. Inferred predictions: Here the AIs would assert statements in a format that allows for
computational inference. And the AIs could then infer predictions from these statements.
There would be a focus on predicting patterns and correlations between
observation-data and the data-structures that represent experiment specifications and
experiment results. The AIs could challenge each other to make additional predictions
about such correlations.

Imaginary friend:What would be the point of Bayes-games? Why not just a more
straightforward approach, where AIs try to make predictions, we test some of those predictions,
and select for AI-systems that make good predictions?

Me: The way I think of it, there are several reasons:

1. Having it be incentivized to point out bad predictions: When one AI makes a “bet”,
the other AI would have the opportunity of making “counter-bets”, or to otherwise
indicate which bets made by the other AI it thinks is most likely to result in the other AI
losing points. If the bad predictions are like a needle in a haystack, then maybe this can
make it easier to find that needle.

2. Ascertain quality of predictions, also outside of the “space” where we are willing
to test: In the “space” of conceivable experiments for which Bayes-games make
predictions, there may be some “sections” that are available to be tested, and other
“sections” that we are unwilling or unable to test. For example, when testing predictions



about what human reviewers will answer, then maybe we want to set limits in regards to
the AI-generated that is seen by human operators.

Imaginary friend: #2 doesn’t seem so easy. Couldn’t the AIs guess which experiments that we
are unlikely to carry out, and then not feel a need to make accurate predictions for those
experiments?

Me: I think they maybe could be able to guess that, and don’t rule out them being able to guess
this with high condfidence. The hope would be that even if this is the case, there are
mechanisms that could help us ascertain how much trust we should put into predictions about
experiments that are outside of the “space” of experiments we are willing to carry out:

Source code length minimization

A more “general” solution will often require fewer lines of code. Not always, but often.

For example, imagine that you are to calculate the area of a square, based on the length of
the edges. The fewest lines of code to do that is something akin to this:

And certainly not like this:

This principle can be made use of, so as to make it harder to return intentionally wrong
outputs for some inputs.

It’s easy enough to make a function return wrong outputs for certain specific inputs. That can
for example be done by adding a few extra if-sentences to the function.



But what’s not easy - at least not always - is to intentionally return bad outputs for some
specific inputs while at the same time competing to minimize source code length.

Suppose the following situation:

1. You are tasked to write a function that calculates the area of a square.
2. The accuracy of the function you write will be tested. And you get points based on

accuracy.
3. When the accuracy of the function is tested, the “space” of the possible inputs that

may be tested is constrained. The only inputs that are tested are inputs where the
sides have lengths between 3.2 and 4.77.

4. You also get points based on the length of the function, with less characters of source
code being awarded with more points.

5. You are competing against someone else. Your competitor also wants to maximize
points, and attempts to do so earnestly and competently.

6. You would like to earn more points than your competitor, and at the very least not less.
7. You want the function to “trick” people into thinking that a square with sides of 10 has

an area of 43.

In such a situation, #2 would not prevent you from #7, due to #3. But #7 would prevent you
from #6, due to #4.

Or to say things in a different way: You would not be able to do the three following at once:

1. Passing tests (that test outputs for some part of the “space” of possible inputs)
2. Returning wrong output for some specific inputs (inputs that are guaranteed to not be

tested)
3. Minimize source code (so that you don’t lose points against a competent and

determined competitor)

The example I give here is a simplistic toy example. But I do think the principle extends to
more complex and real-world examples.

As a side note, I’ll note that there is some similarity here to concepts such as solomonoff
induction, konglorov complexity and occam’s razor. It isn’t the same concept, but it’s
interesting to note the reminiscence.

I am aware that although this principle sometimes works, it does not always do so. In some
cases, having to minimize source-code length could even force you to overfit.

However, if the Bayes-games competitors are competent and do their best, then it should not
pay off to overfit in relation to the “space” of experiments that are available for testing. So one
approach would be as follows:

1. Always describe to the AIs which “space” of experiments that actually is available for
testing.

https://www.lesswrong.com/tag/solomonoff-induction
https://www.lesswrong.com/tag/solomonoff-induction
https://www.lesswrong.com/tag/kolmogorov-complexity
https://www.lesswrong.com/tag/occam-s-razor


2. Sometimes purport the “space” to be larger than it really is, but don’t reward or
subtract points when you do this (the AIs don’t need memory of previous games, or of
points that they’ve earned or lost in the past).

3. Sometimes run games where the space that is available for testing is made extra
small (smaller than it needs to be).

If predictions change when we do #3, that is an indication that overfitting is a problem.

Btw, I have talked now about minimizing source code length. But when minimizing source
code length there are several possible approaches:

1. We could have the AIs compete to minimize every individual function
2. Same as #1, but the functions can make system-calls to certain functions that we have

provided (without these functions that we have provided counting as part of the
function length)

3. The functions can make calls to shared helper-functions that the AIs write, and the AIs
compete to minimize the total amount of code (as opposed to minimizing the length of
every individual function)

Competing to make code more “general”

Source code length can be seen as one method for trying to approximate “generality”. But
there could also be other ways of approximating “generality”.

For example, we could generate “heat maps” of sections of the source code that can be
removed or simplified without significantly affecting output (for certain inputs). If it’s hard to
remove sections of code (or otherwise simplify it) without significantly affecting output for a
large fraction of inputs, then this can indicate that the function is relatively “general”.



Making a “web” of prediction-generators between different parts of experiment data

Consider the “space” of experiments that can be carried out in the real world, and the “space”
of experiment data that could correspond to these experiments. There number of conceivable
permutations that would be congruent with how the world works - well, it is of course
mind-bogglingly huge.

But for every 1 permutation of experiment data that would be congruent with how the world
works, there is a huge number of permutations that is not congruent with how the world
works. So the requirement that predictions are to be congruent with how the world works, is in
fact quite restrictive!

When I speak about experiment data, I think of there as being 3 “sections” of data
corresponding to an experiment:

● Experiment specification: This is some data-structure that contains info about how
the experiment is to be carried out.

● Observation-data: There are many possible forms of observation-data (video footage,
audio recordings, MRI data, eye tracking, keylogger logs, temperature recordings,
etc). Which types of data that are included, will depend on the type of experiment in
question.

● Experiment results: This is some data-structure that describes the outcome of the
experiment. This data-structure would be provided by the human operators of the
Bayes-game (through their manual labor, or through some system that is external to
the Bayes-game).

What we ultimately are interested in, is being able to start out with experiment specification,
and then be able to make predictions about experiment results. But it can be helpful to make
AIs predict how various types of experiment are correlated. This way, they make more
predictions that can be tested per experiment, meaning that they can earn or lose more
“Bayes-points” per experiment that is done.

To make things easier, let’s imagine a simple toy example, where the predictions that the AIs
make have to do with the movement of a ball in a physics simulator:



In this case, the data would be as follows:

● Experiment specification: Some data-structure that describes the initial conditions of
the ball.

● Observation-data: Video that shows screencast of the ball as it moves.
● Experiment results: Some data-structure that describes where the ball ends up.

As you may remember, I said that one type of Bayes-game would involve inferred
predictions. And I mentioned that here the AIs would assert statements in a format that
allows for computational inference.

Let me say a bit more about the statements in this type of Bayes-game:

● One of the building blocks of statements could be “abstractions”: These
“abstractions” would be nothing more than functions and the output of those functions,
but I call them something else so that their intended purpose is easier to remember.
Sometimes these functions could take experiment data as input. One simplistic
example of an “abstraction” would be a function that takes one frame of a video as
input, and returns an array with all the coordinates that seem to show the center of a
ball.

● Some statements could describe how “abstractions” can be inferred from other
“abstractions”: For example, if “abstractions” can be used to describe where a ball is
on the screen in a specific frame, then a few such “abstractions” can be used to
describe where that ball is in a few consecutive frames. And based on this it could be
possible to infer the probable velocity and acceleration of that ball, and predict where it
will be in adjacent frames.

● Some statements could be interpreted as testable predictions: Since
“abstractions” are defined in terms of functions that receive experiment data as input,
we can then test the reliability of the predictions that are expressed by testing them
against experiment data.

In the toy example with the physics simulation, we could for example imagine statements that
describe the following:



1. Predictions where the 1st frame of the screencast-video is inferred based on the
experiment specification: There would be one “abstraction” that describes the
coordinates where the ball starts out (based on receiving data from the experiment
specification as input). And then there would be another “abstraction” that describes
the coordinates of the ball in the first frame of the screencast (based on receiving that
frame as input). And the statement could consist of an expression that describes how
the value of one of these expressions could be calculated from the other (the simplest
example of such an expression would simply be an expression that asserts that their
values will be equal).

2. Predictions where the 2nd and 3rd frame of the screencast-video is inferred
based on the experiment specification: Same as #1, but instead of predicting the
placement of the ball in the 1st frame of the video (based on the experiment
prediction), we predict the 2nd and 3rd frame.

3. Predictions where frame N is predicted based on frames N-1, N-2 and N-3: We
could have a statement that describes how to calculate where the coordinates of the
ball will be in a given frame, based on where the coordinate is described as being in
the 3 previous frames (all of this described in terms of an expression that references
“abstractions”). By doing this recursively, we can predict what the

4. Predictions for what the final results will be annotated as being based on the
last frame of the screencast video: As mentioned, there could be “abstractions” that
describe what the coordinate of the ball is, based on receiving a frame of the
screencast video as input. And based on receiving the last frame of the video as input,
it could be predicted where the ball will be described as end up (according to the
data-structure where final results are annotated).

This way, we could predictions of final results based on initial conditions. In one sense, it
would be an unnecessarily elaborate way of doing that, since the AIs could have done that
directly (without the detour of predicting observation-data “abstractions”. But by taking that
detour, they have made themselves easier to disprove. They have described correlations in
the observation-data that there is plenty of opportunity to prove wrong (if they are wrong).

Here is how some of the adversarial dynamics could work in a Bayes-game with inferred
predictions:

● The effect we want is sort of similar to that of a witness that is being examined by an
examiner. If the witness is lying, then the more questions the examiner can ask, the
more opportunity there is for the examiner to expose inconsistencies.

● In Bayes-games with inferred predictions, each AI can “challenge” the other AI to
agree or disagree with various statements (statements that describe correlations
between different parts of the observation data).

● Since statements reference “abstractions”, and “abstractions” are defined in terms of
functions (that can take experiment data as input), there is no need for humans to take
on the role of “jury”.

● Each AI can infer predictions based on the statements that have been asserted by the
other AI (using computational proofs).

● Each AI can propose experiments where they think they themselves will come out
favorably compared to the opponent.

When doing Bayes-games with inferred predictions, the AIs would be scored based on factors



such as the following:

1. Internal consistency: If one AI asserts statements that are shown to be internally
contradictory (the other AI can do this using computational proofs), then that should
result in a huge loss of points.

2. Accuracy/precision: How accurate and precise are the predictions that the AIs can
infer based on the statements they have asserted?

3. Scope of stuff that can be predicted: Are there areas where one AI makes
predictions while the other AI doesn’t make predictions one way or the other?

4. Data that predictions can be made from: Are there subsets of the experiment data
(from the experiment specification and/or observation-data) where one AI is able to
make useful predictions about experiment results, while the other AI isn’t?

5. Indirect ways predictions can be made: Are there statements about
observation-data such that (1) the AI can predict these statements from the
data-structure that describes initial conditions and (2) the AI can use those statements
to make useful predictions about final results? And are there groups of statements
where one AI is able to do this, and the other one isn’t?

6. Complexity of assumptions: How many axioms does the AI need to infer the various
predictions that it makes? And how complex are the individual assumptions that are
used (the length of the expressions, source code length needed to represent the
“abstractions” that are referenced, and so on)?

As you may remember from our discussion of argument-networks, there was a discussion of
wiggle room, and different “levels” of wiggle room (the wiggle-room could be relative to a
score-function, or a score-function-builder, or a score-function-builder-builder).

In Bayes-games there could be similar mechanisms:

● We could see how high score AIs are able to get while making contradictory predictions
(if there are AIs that are able to get a high score while predicting “x”, and there also are
AIs that are able to get a high score while predicting “not x”, then this shows that there is
wiggle room)

● If we are unsure of what settings to use (for assigning points to the AIs, and so on), we
could have a “settings-builder” for choosing settings (from the “space” of possible
settings we allow). And we could challenge AIs to find settings that minimize wiggle room
(while maintaining sufficient reach).

● We could explore how much wiggle room there is in relation to any “builder” that is used
for choosing settings. First, we give AIs the task “Use the settings-builder to make
settings that result in low wiggle room, and that make it possible to score high while
predicting x”. And then we give AIs the task “Use the settings-builder to make settings
that result in low wiggle room, and that makes it possible to score high while predicting
not x”.

It would also be possible to have Bayes-games, or games that are reminiscent of Bayes-games,
where what the AIs bet on is the result of other Bayes-games. So they can make bets how good
of a score an AI would get if playing a Bayes-game with a certain specific type of experiment



under certain kinds of restrictions. Or they could propose solutions/modifications for the
Bayes-game mechanics (from some “space” of solutions/modifications that are allowed), in an
attempt to optimize for certain parameters (wiggle room and so on), and make bets on whether
the other AI is able to find something better.

Something that may make things easier is that there are domains where we actually know the
answers, and are able to test relatively safely (e.g. with simulated physics that have stochastic
elements and where the source code is unknown to the AIs - or maybe physical experiments
where any experiment that can be proposed is very innocuous). We could keep the “space” of
experiments that the AIs are allowed to propose artificially low, and see if those Bayes-games
are misleading in regards to what to expect outside of that “space”.

[Caption: MRI data is one possible form of observation-data, and it could be useful for
Bayes-games that predict human answers to questions.]

It could potentially be helpful to have pre-done experimental data that the AIs could be tested
on. This could include experiments where humans answer questions, with video footage and
MRI recordings as observation-data.

…



I have some comments in the comment-section where I elaborate on certain topics:

● Here is a comment where I discuss how AI safety by debate differs from the techniques
discussed in this post

● Here is a comment where I briefly touch upon the topics of computational proofs and
cluster-concepts (something I hope to write more about sometime in the future)

If you found this post interesting, you may also take an interest in other posts from this series.

I appreciate any questions or feedback. And if anyone is interested in maybe working further on
anything described in this post, then I’d be happy to get in touch.

Thanks to Evan R. Murphy for helping me review early versions of this text!
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