

Table of Contents

Executive Summary​ 2

Problem Definition​ 3

Introduction​ 3

Technical Review / Background​ 3

Design Requirements​ 4

Design Description​ 5

Summary of Design​ 5

Design Details​ 6

Wiring Diagram​ 9

Algorithm Design​ 9

Action Item Report​ 18

Task Assignment​ 18

Gantt Chart​ 18

Evaluation​ 19

Calculations​ 19

Test Plan​ 20

Results & Discussion​ 23

Appendix A: SOLIDWORKS Drawings​ 25

Appendix B: Bill of Materials​ 29

Appendix C: Arduino Autonomous Mapping Code​ 30

Appendix D: References​ 37

1

https://docs.google.com/document/d/1awbCo0cN5qNQM4dTEBOLqv9qxR6dYy-7/edit#heading=h.4d34og8

Executive Summary

Our team was tasked to create and design an autonomous rover that can line follow and
retrieve a can at the end of a closed track. Our design parameters involved designing a claw that
could grasp the can, utilizing infrared sensors for line following, coding a PixyCam for object
detection, and fabricating a compact chassis that could maneuver around the track and hold all of
the components together. Our rover also needed to fully stop at the end of the track, then begin
object detection to retrieve the can. Our main goal was to create a compact rover that could swiftly
maneuver throughout the course, and successfully detect the can for retrieval.

One unique aspect of our rover is the formation of our IR sensors. The IR sensors are placed
below the chassis in a triangular formation. This allows us to be more accurate in detecting the
black line for our line following code. Our chassis is also shaped like an arrow, and features slits to
strap down our battery and holes for standoffs. On top of our chassis, we created a platform
supported by standoffs to hold the Arduino board. Our claw mechanism utilizes one 3D printed
claw and one laser cut claw. They are connected through gears which allow the claws to open and
close due to the rotation of the micro servo. For our PixyCam, we created a holder at the front of
the chassis that allows the camera to have full visibility of the environment.

We decided on the 34:1 gearmotor as it had a higher maximum efficiency (44%) and a 300
RPM no-load speed compared to the 47:1 gearmotor, which had a 220 RPM no-load speed and a
maximum efficiency of 42% (both at 12V). We implemented the 80mm wheels into our rover as it
gave us greater ground clearance for the sensors. Our chassis was laser cut to reduce cost and also
because it was easier to secure our electronics with the slits.

Fabrication of our entire rover assembly was complete by Week 7. In the remaining weeks,
we focused on testing the line following and can retrieval code. Through testing, we discovered
some issues with our line following. We determined that these issues were due to the bending of
our IR sensors that caused the internal components to break. To solve this problem, we soldered
the broken parts back together. Another issue we encountered was the turn speed of our rover. By
testing different motor speeds and removing delays from the code, we were able to shorten our
track time by ten seconds. We also adjusted the IR sensor distances by centering them according to
the midpoint of the two bulbs of the IR sensor. This was different from our original placement,
which had the black receiver bulb over the black line. Lastly, we found that our claw mechanism
was slightly loose due to the screw connected to the servo motor being of nonoptimal length. By
adding washers we were able to improve the stability of our claw for can grabbing.

For our final track results, we were able to complete the entire course in 20.5 seconds. Our
rover was significantly faster during turns from our previous trials. One thing we tried to improve
upon was our consistency for the line following code. During some tests, our rover could not detect
the line and ran off the course. However, through trial and error, we were able to place second in
the overall final competition.

2

Problem Definition

Introduction

Utilizing skills in coding, fabrication, electronics, and mechanical design, we underwent a 10
week process to create an autonomous rover within a budget of $300. The rover should be able to
use a PixyCam for object detection, implement infrared sensors for line following, maneuver the
preliminary and final tracks successfully, stop when encountering the end of track, and retrieve a
can as efficiently as possible.

Our main priority was to create a rover that was light and compact to be able to easily make
sharp turns around the track for line following. We also wanted to ensure that the claw mechanism
was at the optimal strength in order to grab and retrieve the can. Keeping these constraints in
mind, our goal was to determine the best components for our rover and how to implement them
into our overall design.

Technical Review / Background

Robotics has been a field of interest for humans throughout history. For almost two
centuries, humans have always been fascinated by the idea of controlling a small vehicle capable of
being controlled by humans from far distances. To do this, Nikola Tesla, an innovator in electronics,
decided to create some of the first vehicles controlled by a variety of radio remote controls. The
addition of the radio controllers allowed the individual to control the vehicle from far distances,
allowing exploration and research from places where people usually are not able to go.

This innovation of a now radio controlled vehicle was soon improved during the Industrial
Revolution. As the Industrial Revolution continued, notable countries became industrialized, and
the robotic and rover industries began flourishing due to the innovative technology surrounding it.
By the year 1980, the market of robotics and rovers began to bloom due to competition between
global superpowers, such as the United States and the USSR. The competition between the two
countries soon became too big to be held on Earth and moved to outer space. The space race
between the USSR and the United States helped fund the research and technology to make rovers.
​ Space exploration soon became one of the main priorities of the United States. A subteam of
mechanical engineers, led by Eduardo San Juan, worked to develop and invent a Lunar Rover to
soon be launched into space and used by astronauts on the moon. By 1978, the Moon Buggy was a
well-known revolutionary advancement in not only space exploration but rover technology. To
expand space exploration one step further, NASA launched a rover named “Pathfinder” to land on
Mars and demonstrate just how revolutionary rover technology could influence space exploration
on the Red Planet. Pathfinder was one of many autonomous rovers to be sent to Mars for
exploration. Rovers have become one of, if not, the most important factors contributing to the
development and exploration of planets and natural satellites.
​ In addition to the work of NASA, the space agencies of other countries, such as China and
Russia, have further implemented autonomous rover technology in their planetary exploration

3

missions. The space environment makes it necessary for the rovers to be autonomous, just like our
project, to be able to search for and send data back to Earth.
​ Our project is dedicated to design and fabricate an autonomous rover that is capable of line
following and object retrieval. Similar to space exploration, our rover will be directed to follow a
specific track to then collect the object that it is programmed to, allowing us to grasp onto a small
replicated experience of the space exploration rover program. This autonomous project will then
allow us to experiment with the engineering analysis and fabrication that had to be involved to
effectively replicate a basic understanding of exploration along with path and object recognition.
This project allowed us to test our problem-solving skills. In addition, a series of learned
engineering skills had to be applied to design a sufficiently effective claw mechanism capable of
picking up the object, along with a chassis that would facilitate turning and effectively distribute the
weight of the individual rover components. The coding subteam was able to brainstorm, test and
troubleshoot a series of algorithms to efficiently meet the line following and object recognition
requirements. To conclude, the autonomous rover project allowed our team to put our engineering
abilities to the test and to gain knowledge in programming and fabrication.

Design Requirements

1.​ Structure:

a.​ Rover dimensions < 12 x 16 inches including wheels and claw
b.​ Use materials provided by the lab; other materials can be purchased externally with

permission from TA
c.​ 3D printed and laser cut components are allowed but added onto the budget
d.​ Battery must be easily removable

2.​ Power:
a.​ Battery switch must be easily accessible
b.​ Using an internal combustion engine is prohibited

3.​ Safety:
a.​ No protruding sharp objects. All sharp corners must be filed or sanded down
b.​ Wires and connectors are to be completely covered and insulated
c.​ All batteries will be charged by staff members

4.​ Cost:
a.​ Budget must be less than $250; incorporating 3-D printing and laser cutting will

increase the budget to $300
b.​ The cost must be broken down into a Bill of Materials (BOM)/Parts List, in which the

Fair Market Value (FMV) of each component must be listed.
5.​ Product:

a.​ The rover must follow a course denoted by a black line and grab a payload

4

Design Description

Summary of Design

The Kirby-te team’s rover was designed and influenced by the design of the track that it was
going to be tested on. Consequently, the overall design was meant to be small to avoid any issues
regarding the turning radius of the rover as a whole. In addition, the various electrical components
that made it to the final design of the rover altered the overall design so that they would all fit onto
the chassis.

The claw mechanism was designed to tightly hold the circular object tightly. In order to do
so, it had to apply a grabbing force on both sides of the object. To achieve this, the claw mechanism
is controlled by a single servo on the right side of the front of the rover. The right 3D printed claw
would be mounted by the servo horn and a single servo at the center to tightly secure the claw
onto the servo to avoid any grip or control issues. Consequently, a gear mechanism was created to
efficiently control both left and right claws from a single side. Each claw consisted of a gear with
18-teeth to avoid any chipping and improve the torque of both sides. The left wooden claw was
mounted strategically on a short standoff to have equal height to that of the servo to have both
gears meshing correctly and efficiently.

The wheels were chosen to be placed at the back of the rover. This design position was made
due to the majority of the electronics and the battery being towards the back of the rover and thus
requiring the largest amount of support. The single ¾” Caster Wheel was mounted along the
vertical center line towards the front of the rover to accommodate any weight from the battery, the
servo, or claws that may cause the rover to tip. Aside from distributing the weight evenly across
the chassis, placing the wheels in a triangle formation was the best way to support the overall
weight of the rover.

The chassis was originally designed to be a two-platformed circular chassis with vertical
mounts on its edges. This idea was quickly scrapped due to its bulkiness. The overall final design of
the chassis is a pentagon shape to reduce its size and to aid in the placement of the IR sensors at
the bottom of the chassis. A series of slots and cutouts were made throughout the chassis for wire
management purposes. These series of slots and cutouts not only improved the wire management
but reduced the weight of the rover to make it lighter and faster. A second platform was created at
the back to efficiently help locate and distribute the rover's electrical components and avoid any
short circuits that may end up causing damage to the electrical systems. The slots in the middle of
the chassis base were placed to wrap velcro straps around the battery to safety and tightly hold it
in place. A series of M3 screws were placed across the chassis to hold the electrical components,
along with standoffs and brackets. Laser cutting was effectively used for the creation of both the
chassis and the back platform to avoid any dimension errors caused by other fabrication methods.

5

Design Details

Isometric View: Rover Full Assembly plus C.O.G.

This is an isometric view of the integrated rover assembly. The assembly was a useful way to
view and test how well the electric components were spaced out, and how everything was
distributed and would work together as a rover. The height of the rover is perfectly leveled due to
the back two wheels and the caster wheel creating a balanced chassis. In addition, the claw
mechanism is located at the front of the chassis. The PixyCam is located 2.51 inches behind the front
to aid and provide the best field of view of the camera. The width of the total assembly of the rover
is a total of 9.5 inches and a length of 12.75 inches in total from the back to the tip of the claws.

Isometric View: Chassis

​ The chassis was the most crucial part of the assembly. Its design allowed for an optimal
distribution of weight across it. The chassis measures a total of 9.5 inches in length and 8 inches in
width. Several M3 screw holes were located across the platform to aid the support of electronics,
platforms, and mounting brackets. Various slots were created to aid both with wire management
and the placement of the IR sensors. For the placement of the IR sensors, 3 mm diameter slots were

6

created instead of screw holes. This allowed the fabrication team to move the IR sensors in the
event it was required to facilitate and ease the troubleshooting process with line following. A cutout
was created for the micro servo to securely set it in place flush to the chassis. Slots were also created
for the motor brackets to increase the adjustability of motor placement.

Isometric View: Right Claw

The right claw was a crucial part of the overall design. It allowed the micro servo to control
both the right and left claw. The right claw was 3D printed to include the micro servo horn cutout,
increasing its grip and securely fastening it to the micro servo. In addition, the claw is combined
with the gear to prevent any strength issues that it would have had if this were not done. The overall
length of the claw is 5.6 inches. The claw design was strategically designed to, when meshed with
the left claw, have a grip diameter of 2.2 inches. This 2.2 inch grip length is 0.4 inches less than the
average diameter of a soda can, allowing the claw mechanism to tightly and safely secure the can
with no grip issues. The gear has a radius of 0.76 inches and a total of 18 teeth.

Isometric View: Left Claw

7

This is an isometric view of the left claw of our rover. The left claw measures a length of 5.6
inches. Similarly to the right claw, the left claw is merged to its gear to increase its durability. The
hole at the center of the gear is an M3 screw hole to securely tighten it to a standoff on the chassis.
The gear’s radius is 0.76 inches, with a total of 18 teeth, like the right claw.

Isometric View: Top Platform

This is an isometric view of the back platform which held both the buck converter and the
Arduino and its motor shield. This component was laser cut to avoid dimension errors and increase
fabrication speed. There are a total of four screw holes, each placed 0.25 inches from their closest
edge. These four screw holes were made to, with the help of an M3 screw, attach the platform to
standoffs. Two long slots are placed at the front and the back of the platform, and were created to
help with wiring management. In addition, a hole was created for the on/off switch. This cutout is
0.67 inches by 0.5 inches to tightly fit the switch. Overall, the back platform was crucial for both
wire management and the equal distribution of electronics on the rover.

Isometric View: PixyCam Bracket

This bracket was designed to secure the PixyCam in its designated place in an upright
orientation. In addition, it provided support to the PixyCam to keep its field of view steady through
the rover’s motion. The bracket has a height of 0.75 in, width of 1 in, and length of 1 in. The screw

8

holes are all M3, and are 0.61 inches apart to fit the dimensions of the PixyCam. It was secured onto
two standoffs to attach it to the chassis.

Wiring Diagram

Algorithm Design

​ When considering the different possible turning angles, our team decided to position the
three IR sensors in a triangular formation. Each IR sensor was attached to a horizontal slit to
enable horizontal position adjustments to change the overall shape of the triangle if needed. With
the IR sensors aligned as a triangle, our rover could track and follow all degrees of turns, both
sharp and wide turns. With this design, our rover’s center of rotation would be positioned at the
wheel that is stationary when turning to keep the rover in line with the track afterwards, reducing
zigzagging. By placing the base of the IR triangle collinear with the midpoint of the rover’s length,
the rover could be perfectly parallel with the track after most turns.

​ The algorithm was divided into three different modes, consisting of line following,
can-grabbing, and braking. For line following, eight different IR sensor actuation scenarios were

9

considered. If only the middle sensor was “high,” the rover would go forward. If all three IR sensor
values were “low,” the rover would slow down and detect the next turn. If only the right IR sensor
was “high,” then the rover would turn right. If only the left IR sensor was “high,” then the rover
would turn left. If both the middle and right IR sensors were “high,” the rover would do a sharp right
turn. If both the middle and left IR sensors were” high,” the rover would do a sharp left turn. Lastly,
if either all three IR sensors or just the left and right IR sensors detected “high,” the rover would
brake and go into can-grabbing mode.

​ In can-grabbing mode, the rover was designed to initially rotate left in place until a can of
the right color signature was detected. After the can was detected, the rover would adjust speeds
until the can was in reach of the claws, when the micro servo would be activated to grab the can.
Afterwards, the rover would go forward to move the can out of the designated box and enter the last
mode, where the rover would brake and remain at rest until the Arduino was reset.

Pseudocode:

INCLUDE libraries necessary for the servo, motors, and Pixycam

SetUp:

SET pins for the IR sensor, motors, and servo

SET Pixycam parameters, Pixycam variables, IR sensor values, motor speeds, and enter
mode 0

​ ATTACH servo initialize Pixycam

Loop:

Mode 0:

READ all three IR Sensor values

IF only the middle IR sensor detects high, THEN go forward

ELSE IF all three IR sensors detect low, then go into detection mode

turnDetect:

IF only the left IR sensor detects high, THEN turn left

IF only the right IR sensor detects high, THEN turn right

ELSE IF all three IR sensors detect high OR only the left and right IR sensor detect
high, THEN brake and go into mode 1

​ Mode 1:
​ GET blocks
​ IF signatures are detected
​ ​ LOOP through each signature

10

IF starting x coordinate and width values for each signature have not
been initialized in an array
​ SET x coordinate and width values
READ current x coordinate and width values
IF current width is greater than 150
​ SET motor speeds to 0 and servo to 85
​ SET motor speeds to 255 for a bit
​ SET motor speeds to 0 and servo to 0
​ SET mode to 2
ELSE IF current x coordinate is greater than 140 and less than 150
and current width is not greater than 150

SET left motor speed by mapping current width to possible
motor speeds (same)
SET right motor speed by mapping current width to possible ​
motor speeds (same)

ELSE IF current x coordinate is greater than 150
SET left motor speed by mapping current width to possible
motor speeds (less)
SET right motor speed by mapping current width to possible ​
motor speeds (more)

ELSE IF current x coordinate is less than 140
SET left motor speed by mapping current width to possible
motor speeds (more)
SET right motor speed by mapping current width to possible ​
motor speeds (less)

​ ​ ELSE WHILE blocks are not detected THEN turn rover clockwise

​ Mode 2:
​ ​ SET motor speeds to 0

11

Flow Chart:

12

13

14

15

16

17

Action Item Report

Task Assignment

​ Considering the complexity of the task at hand, it was necessary to delegate tasks between
team members and have each team member specialize in different aspects of the rover. The initial
task assignment process was simple, and involved each team member selecting what positions they
felt most comfortable with and had the most experience in. Furthermore, given that certain tasks
occur at different times in the project, like the workload for CAD being more towards the beginning
of the project, positions were selected to ensure that everyone contributed equally throughout the
project. The assignments we settled on were Eric and Gavin on algorithm design and coding, Victor
and Kristen on fabrication and electronics, and Angel and Caden on CAD design. Weekly tasks were
fluid, and team members helped with pressing tasks even if it wasn’t within their initial job
description.

Gantt Chart

18

Evaluation

Calculations

Vehicle Parameters:
●​ Total mass (with battery): 1026 grams
●​ Predicted Drive Time: 20 minutes (minimum)
●​ Mechanical Advantage: 34:1
●​ Stall Torque: 6.8 at 6V 𝑘𝑔 • 𝑐𝑚
●​ Stall Weight: 1.7 kg at 6V

Elaboration:

​ To obtain the predicted drive time, sum the total current draw of the electronics on the rover

and use the equation, to solve for , the total run time of the rover. In this case, the 𝐼 = ∆𝑞
∆𝑡 ∆𝑡

current draw from the components will be 140 mA from the PixyCam, a maximum of 5A per motor,
220 mA from the micro servo, and a maximum current draw of 40 mA per port on the Arduino, with
5 connections total. Summing these currents results in a worst-case current draw of 10,560 mA.

19

Substituting this value into the equation for I, and substituting the charge of the battery, 3600 mAh,
for yields a minimum operating time of 0.34 hours, or approximately 20 minutes. ∆𝑞
​ To determine the mechanical advantage of the motor, simply take the output torque and

divide it by the input torque. Given that , rearranging the equation τ
𝑜𝑢𝑡𝑝𝑢𝑡

=
𝑁

𝑜𝑢𝑡𝑝𝑢𝑡

𝑁
𝑖𝑛𝑝𝑢𝑡

 τ
𝑖𝑛𝑝𝑢𝑡

yields . Therefore, the mechanical advantage can be taken from the
τ

𝑜𝑢𝑡𝑝𝑢𝑡

τ
𝑖𝑛𝑝𝑢𝑡

=
𝑁

𝑜𝑢𝑡𝑝𝑢𝑡

𝑁
𝑖𝑛𝑝𝑢𝑡

manufacturer as 34 to 1 based on the gear ratio.
​ The stall torque is given by the manufacturer for the 34:1 gearmotor as 11 for 𝑘𝑔 • 𝑐𝑚
operation at 12V. Given that our motors will operate at 7.2V, based on the battery, it will have a stall
torque that is lower than this. At 6V, the stall torque is listed at 6.8 . Therefore, the actual 𝑘𝑔 • 𝑐𝑚
stall torque of the 34:1 gearmotor will be somewhere in between these values. We will take the
lower stall torque value for our calculations. By comparison, the stall torque for the 47:1 gearmotor
will be 15 at 12V, and 9.1 at 6V. Despite its lower stall torque, the 34:1 gearmotor 𝑘𝑔 • 𝑐𝑚 𝑘𝑔 • 𝑐𝑚
was chosen because it will rotate with a higher speed than the 47:1 gearmotor. It was decided that
since the motor would not need a large amount of torque to maneuver the rover, speed was more
important than torque for the purposes of the competition. For example, at 6V, the 34:1 gearmotor
has a no-load RPM of 290, while the 47:1 gearmotor has only 210 RPM.
​ To calculate the stall weight of the motor, you find the maximum weight that the motor can
lift with a pulley with the same radius as the selected wheel, 40mm. Since when the force is τ = 𝐹𝑟
applied perpendicular to the radius, the torque of the motor will be the stall torque multiplied by
the radius of the wheel. However, the units that the stall torque is given in by the manufacturer,

, is not conventional. A stall torque of 6.8 is the same as the torque produced by a 𝑘𝑔 • 𝑐𝑚 𝑘𝑔 • 𝑐𝑚
6.8 kg weight attached 1 cm away from the axis of rotation. Therefore, taking the worst-case torque
value at 6V, 6.8 , and dividing it by the radius of 4cm yields a stall weight of 1.7 kg for one 𝑘𝑔 • 𝑐𝑚
motor. The mass of our rover is 1.026 kg, so the stall weight of one motor is greater than the total
mass, meaning that there will be plenty of torque to move the rover through the competition track.

Test Plan

Rover Parts:

-​ Motor Direction:
1.​ Connect mounted motors to proper ports on the motor shield with soldered wiring.
2.​ Ensure H Bridges on Cytron Motor Shield are placed in the correct positions based

on the code written.
3.​ Using manual buttons on the motor shield, test DIR1 and DIR2 for each motor,

ensuring they are turning as intended. If not, switch motor wiring.
4.​ Test motors with code to ensure Arduino connectivity.

20

-​ Buck Converter Calibration:
1.​ Solder wires to each end of the buck converter, connect Voltage in and Ground in

wire to the motor shield.
2.​ Using a multimeter, read voltage going through the buck converter when connected

to a 7.2V Battery, calibrate potentiometer using flathead screwdriver until
multimeter reads 5V out.

-​ Servo Claw Functionality:

1.​ Connect servo power to the buck converter, ensuring the buck converter is
outputting 5V.

2.​ Connect servo signal pin to pin 5 on Arduino, as specified in code.
3.​ Mount 3D printed claw piece on claw using provided servo horn.
4.​ Test position 0 for servo, then using Arduino set desired position for resting point on

claw.
5.​ Input multiple servo positions, observe claw functionality.
6.​ Connect the second claw arm, ensuring spur gear teeth are meshing properly.
7.​ Test servo inputs, actuating claw, and set proper servo values for desired claw

position.

-​ Wheel Alignment:
1.​ Attach wheels to motors once motors are mounted on the chassis.
2.​ Actuate motors, observing the wheel parallel to the plane, and see whether they

move completely straight or oscillate.
3.​ If oscillating, adjust wheels to be completely parallel to the motor.
4.​ Repeat until both wheels are aligned.

-​ IR Sensor Power:

1.​ To ensure all IR sensors receive power, test the soldered bus using a multimeter.
2.​ Test from all portions of the bus, including opposite ends of soldered wire, to ensure

current passes through the bus.
3.​ Insulate with electrical tape.

Arduino Parts:

-​ IR Sensors Sensitivity:
1.​ Gently bend the sensor pins perpendicular to the IR Sensor and facing towards the

ground.
2.​ Make sure IR sensors are in the right pins and receive power, indicated by one red

LED light on.
3.​ Connect the USB cord to a laptop and the Arduino, then compile and upload the file

named “ir sensor”, which prints the signals of the three IR sensors every second.
4.​ Using a mini screwdriver, turn the potentiometers, clockwise making the sensors

more sensitive and counterclockwise making the sensors less sensitive.

21

5.​ Position the rover on the preliminary course so that one IR sensor is on the black
tape at a time. Then, open the serial monitor on the Arduino IDE, and check to see
values of each IR sensor. Ensure that the sensor reads “1” when on top of the black
tape and “0” on a white surface. Repeat steps 4-5 for all IR sensors until functioning
as specified.

-​ Line Following:

-​ Wide turns:
1.​ Check to see that all IR sensors are working as intended. See IR Sensors

Sensitivity if IR sensors need to be recalibrated.
2.​ Connect the USB cord to a laptop and the arduino, then compile and upload

the file named “Kirbyte_Final”
3.​ Place the rover on the track, aligning the middle sensor on top and parallel to

the black line.
4.​ Check to see if turns work as intended. If not, below is a list to troubleshoot:
a.​ If the rover is missing the turn, then turn the forward speed and/or delay of

detect() down.
b.​ If the rover is overturning, then turn the turn speed down.
c.​ If the rover is zigzagging too much, then turn forward and turn speed down.
d.​ If the rover turns the opposite way as designed, then turn the forward and

turn speed down to reduce zigzagging.
e.​ If the rover does not detect the brake, then turn the forward speed and/or

delay of detect() down.

-​ Sharp turns:
1.​ Check to see that all IR sensors are working as intended. See IR Sensors

Sensitivity if IR sensors need to be recalibrated.
2.​ Connect the USB cord to a laptop and the arduino, then compile and upload

the file named “Kirbyte_Final_Code_Sharp_Turns”.
3.​ Place the rover on the track, aligning the middle sensor on top and parallel to

the black line.
4.​ Check to see if turns work as intended. If not, below is a list to troubleshoot:
a.​ If the rover is missing the turn, then turn the forward speed and/or delay of

detect() down. Also, consider increasing the delay of brake() in the sharpleft
and sharpright functions and decreasing the detect speed.

b.​ If the rover is overturning, then turn the turn speed down.
c.​ If the rover is zigzagging too much, then turn forward and turn speed down.
d.​ If the rover turns the opposite way as designed, then turn the forward and

turn speed down to reduce zigzagging. Also, make sure that the rover is
aligned properly in the beginning.

e.​ If the rover does not detect the brake, then turn the forward speed down,
increase the delay of the brake(), and decrease the delay of detect().

22

-​ Object Detection:
1.​ Elevate the rover by placing a box underneath.
2.​ Hold an empty soda can wrapped in pink construction paper such that the PixyCam

is able to detect it.
3.​ Move the can side to side to test motor speeds.

a.​ When facing the PixyCam camera, holding the can to its left should cause the
left motor to have a low (or 0) rpm and the right motor to have a high rpm

b.​ Vice versa, holding the can to the right of the camera should cause the right
motor to have low (or 0) rpm and the left motor to have a high rpm

c.​ The differences in rpm should be greater the further left/right the can is
held.

4.​ If the motor speeds are not proportional to its x-coordinate in the camera’s field of
view, edit the motor mapping code to reflect the desired rpm’s.

5.​ Move the can forward and back to test motor speeds.
a.​ When the can is close to the camera, both motors should have low rpm
b.​ When the distance between the camera and the can is increased, the motor

rpm’s should increase
6.​ If the motor speeds are not proportional to the width in the camera’s field of view,

edit the motor mapping code to reflect the desired rpm’s.
7.​ Place the can to the grabbing distance.

a.​ If the servo closes the claw when the can is too far from the camera or too
close to the camera, adjust the constraining width values.

8.​ Once satisfied, initiate object detecting mode and place the rover on the ground far
away from the can to observe its dynamics. Adjust code accordingly.

-​ Combined:

1.​ Place the rover on a track made from black tape on white poster board with a pink
soda can a few feet in front of the end.

2.​ Turn the rover on and observe its turning, speeds, and overall performance.
3.​ Adjust turning speeds and straight line speeds to balance line following turning

precision and speed to minimize the time spent traversing the course.
4.​ Adjust motor mapping to minimize time spent traveling to the soda can, grabbing

the can, and pushing the can out of the box.
5.​ Repeat steps 1-4 to get the best time for completing the objective.

Results & Discussion

Following the final competition, our team received 2nd place overall, out of 40 teams. Our
rover was able to complete the necessary objectives of line following and claw actuation, all in a
time of 20.5 seconds.

The rover structure was made of poplar wood, laser cut to meet design requirements,
staying within the 12x16” dimensions specified. The structure of the rover proved to be durable,

23

even after crashing into the wall many times, and handled the load of the electronics it was meant
to carry. The rigidity of the structure was sufficient, with all connections done via steel screws and
standoffs. The rover was stable during operation, with properly aligned wheels which allowed line
following to be performed effectively.

The weight of the rover was minimized, as there were no unnecessary portions which
increased the weight. Additionally, motors with lower stall torque were used, as it allowed for a
higher RPM, increasing the maximum speed of the rover. This was chosen because the rover stayed
on a flat surface the entire time, therefore the torque necessary to propel it was not too great.

The agility of the rover was sufficient, able to perform stationary turns, and the IR sensor
positioning allowed for incredibly sharp turns to be possible.

Throughout the quarter, the team learned that communication is incredibly important, both
in the engineering design process as well as for all other events, as it leads to an environment
which is much more conducive to faster iteration and development of a design. Additionally,
willingness to ask questions was greatly helpful, as design validation and new ideas concerning
code were advised for or against, while also learning from the experience of those who have taken
the course in the past. Another possible improvement which would be incorporated given an
opportunity to work on the project again is to be willing to try unconventional ideas, as well as
clarifying the design requirements, as it could lead to possible changes which would be beneficial,
such as a PixyCam which could help in line following with PD control.

Overall, the ENGR 7B autonomous rover project was a great learning experience and
opportunity to develop several skills as an engineer, and the success which came out of it was a
result of a strong team which came together, shared ideas collaboratively, and stayed on task
throughout the quarter to achieve a common goal, with a desire for strong performance.

24

Appendix A: SOLIDWORKS Drawings

Drawing: Isometric View KIRBY-TE Rover Assembly CAD

Drawing: Bottom View KIRBY-TE Rover Assembly

25

Drawing: Chassis CAD

Drawing: Back Platform CAD

26

Drawing: PixyCam Base CAD

Drawing: Right Gear Claw CAD

27

Drawing: Left Gear Claw CAD

28

Appendix B: Bill of Materials

29

Appendix C: Arduino Code

/*****

Team Name: KIRBY-TE

Team Members: Caden Michael McCarthy, Gavin Nguyen, Eric Cheng, Victor Plesco, Angel Israel
Derouin, Kristen Chung

Last Edit: 3/21/2023 11:02 AM

Code Purpose: This code is designed to enable a rover with three IR Sensors placed in a triangle to
follow a black line, and if it detects black on all three sensors, then the rover will stop and

activate the cup grabbing code, which will find a cup, drive to it, and when in the range of the claw, will
grab the can and go forward.

 *****/

//libraries

#include "CytronMotorDriver.h"

#include <Servo.h>

#include <Pixy2.h>

//sensor pins

int irSensorL = 2;

int irSensorM = 8;

int irSensorR = 9;

//sensor statuses

int irStatusL;

int irStatusM;

int irStatusR;

//line following speeds

int medL = 240;

int medR = 240;

//detect speeds

int detectL = 210;

int detectR = 210;

//left turn speeds

int LTML = 0;

int LTMR = 200;

//right turn speeds

30

int RTML = 200;

int RTMR = 0;

//cytron motor shield

CytronMD motorL(PWM_DIR, 3, 4); //motorL

CytronMD motorR(PWM_DIR, 6, 7); //motorR

//servo initiation & pins

Servo myServo;

int servoPin = 5;

//pixycam

Pixy2 pixy;

int maxWidth = 320; //max width

int setWidth = 320; //speed constraining width

double InputCoord, InputWidth;

int signatures[8][2] = {{0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}, {0, 0}}; //coord & width for 8
different signatures

//line following if 0, object detection if 1, stop if 2

int mode = 0;

void setup() {

 //serial monitor

 Serial.begin(9600);

 //pin setup for IR Sensors

 pinMode(irSensorL, INPUT);

 pinMode(irSensorM, INPUT);

 pinMode(irSensorR, INPUT);

 //servo setup

 myServo.attach(servoPin);

 myServo.write(0); //initial position

 //pixy cam setup

 pixy.init();

}

void loop() {

31

 //line detection mode

 while (mode == 0) {

 //read sensor values

 detect();

 //forward

 if (irStatusL == 0 && irStatusM == 1 && irStatusR == 0) {

 forward();

 }

 //normal left and right turns - continue detecting

 else if(irStatusL == 0 && irStatusM == 0 && irStatusR == 0 || irStatusL == 1 && irStatusM == 0 &&
irStatusR == 0 || irStatusL == 0 && irStatusM == 0 && irStatusR == 1) {

 turnDetect();

 if (irStatusL == 1 && irStatusR == 0) {

 leftTurn();

 }

 else if (irStatusL == 0 && irStatusR == 1) {

 rightTurn();

 }

 }

 //brake and change to object detecting mode

 else if (irStatusL == 1 && irStatusM == 1 && irStatusR == 1|| irStatusL == 1 && irStatusM == 0 &&
irStatusR == 1) {

 brake();

 delay(100);

 myServo.write(50);

 mode = 1;

 }

 }

 //object detecting mode

 while (mode == 1) {

 //start pixy cam

 pixy.ccc.getBlocks();

32

 //if there are recognized colors

 if (pixy.ccc.numBlocks) {

 //iterate through each signature

 for (int i = 0; i < pixy.ccc.numBlocks; i++) {

 //store initial x coordinate and width

 if (signatures[i][0] == 0 && signatures[i][1] == 0) {

 signatures[i][0] = pixy.ccc.blocks[i].m_x;

 signatures[i][1] = pixy.ccc.blocks[i].m_width;

 }

 //most recent x coordinate and width

 InputCoord = constrain(pixy.ccc.blocks[i].m_x, 1, 319);

 InputWidth = constrain(pixy.ccc.blocks[i].m_width, signatures[i][1], maxWidth); //maxWidth =
340, setWidth can now be adjusted

 //if at grab width (150), brake and grab the can/cup

 if (InputWidth >= 150) {

 motorL.setSpeed(0);

 motorR.setSpeed(0);

 grab(); //initiates claw

 afterGrab();

 mode = 2; //stop everything and brake

 }

 //if can/cup is almost mid and width is too small - go zoom if still far away, go slow when almost
grab width

 else if (InputCoord >= 140 && InputCoord <= 150 && InputWidth < 200) { //width changed from
200 to 150

 motorL.setSpeed(map(InputWidth, signatures[i][1], setWidth, 255, 0));

 motorR.setSpeed(map(InputWidth, signatures[i][1], setWidth, 255, 0));

 }

 //if can/cup is to the right - L motor based solely off width, R motor based off width with max
speed affected by mid/maxR x coord

 else if (InputCoord > 150) {

 motorL.setSpeed(map(InputWidth, signatures[i][1], setWidth, 255, 0));

 motorR.setSpeed(map(InputWidth, signatures[i][1], setWidth, map(InputCoord, 165, 315, 255, 0),
0));

33

 }

 //if can/cup is to the left - R motor based solely off width, L motor based off width with max speed
affected by mid/maxR x coord

 else if (InputCoord < 140) {

 motorL.setSpeed(map(InputWidth, signatures[i][1], setWidth, map(InputCoord, 0, 160, 0, 255),
0));

 motorR.setSpeed(map(InputWidth, signatures[i][1], setWidth, 255, 0));

 }

 }

 }

 //if the pixycam doesn't see the can, then keep turning left until it is detected

 else {

 while (pixy.ccc.numBlocks == 0) {

 motorL.setSpeed(-255);

 motorR.setSpeed(255);

 pixy.ccc.getBlocks();

 }

 }

 }

 //restart mode

 while (mode == 2) {

 brake();

 }

} //end of void loop()

//line following functions:

//detects all three ir sensors

void detect() {

 irStatusL = digitalRead(irSensorL);

 irStatusM = digitalRead(irSensorM);

 irStatusR = digitalRead(irSensorR);

}

//forward motor spins

34

void forward() {

 motorL.setSpeed(medL);

 motorR.setSpeed(medR);

}

//determines what type of turn it is by detecting the left and right sensor

void turnDetect() {

 motorL.setSpeed(detectL);

 motorR.setSpeed(detectR);

 while(irStatusL == 0 && irStatusR == 0) {

 irStatusL = digitalRead(irSensorL);

 irStatusR = digitalRead(irSensorR);

 }

}

//sets the motor speeds to 0

void brake() {

 motorL.setSpeed(0);

 motorR.setSpeed(0);

}

//if function is called, left turn

void leftTurn() {

 motorL.setSpeed(LTML);

 motorR.setSpeed(LTMR);

//while the rover isn't straight yet after the turn, keep sensing until it is straight

 while (irStatusM != 1) {

 irStatusM = digitalRead(irSensorM);

 }

}

//if function is called, right turn

void rightTurn() {

 motorL.setSpeed(RTML);

 motorR.setSpeed(RTMR);

//while the rover isn't straight yet after the turn, keep sensing until it is straight

 while (irStatusM != 1) {

 irStatusM = digitalRead(irSensorM);

35

 }

}

//servo functions

void grab(){

 myServo.write(85); //50 to 85 wraps claw around can

}

//forward after grab function

void afterGrab(){

 motorL.setSpeed(255);

 motorR.setSpeed(255);

 delay(300);

 motorL.setSpeed(0);

 motorR.setSpeed(0);

 delay(1000);

 myServo.write(30);

}

36

Appendix D: References

1.​ “The History of Robots.” The Economic Times,

https://economictimes.indiatimes.com/the-history-of-robots/articleshow/3075438.cms?fr
om=mdr. Accessed 3 March 2023.

2.​ Bellis, Mary. “Eduardo San Juan and the Lunar Rover That Changed the Space Program.”
ThoughtCo, ThoughtCo, 22 June 2019,

https://www.thoughtco.com/eduardo-san-juan-and-moon-buggy-1991716#:~:text=Mecha
nical%20engineer%20Eduardo%20San%20Juan,designer%20of%20the%20Lunar
%20Rover. Accessed 3 March 2023

3.​ “Mars Pathfinder.” NASA, NASA, 7 Sept. 2019,

https://mars.nasa.gov/mars-exploration/missions/pathfinder/#:~:text=Mars%20Pathfind
er%20was%20launched%20December,surface%20of%20the%20red%20planet.
Accessed 3 March 2023.

4.​ “Arduino Uno Rev3.” Arduino. Accessed 23 March 2023.

https://store-usa.arduino.cc/products/arduino-uno-rev3/

5.​ “Pixy2 CMUcam5.” Sparkfun. Accessed 23 March 2023.

https://www.sparkfun.com/products/14678

6.​ “34:1 Metal Gearmotor.” Pololu. Accessed 23 March 2023.

https://www.pololu.com/product/3204

37

	
	Executive Summary
	Problem Definition
	
	Introduction
	Technical Review / Background
	Design Requirements

	Design Description
	
	Summary of Design
	
	Design Details
	Wiring Diagram
	
	Algorithm Design

	Action Item Report
	
	Task Assignment
	
	Gantt Chart
	
	

	Evaluation
	
	Calculations
	Test Plan
	Results & Discussion

	Appendix A: SOLIDWORKS Drawings
	
	Appendix B: Bill of Materials
	
	Appendix C: Arduino Code
	
	Appendix D: References

