

My Personal AI Project

My Own AI Project

For context
This document is going to be expanded as I learn and build my project. I have the whole thing
planned, but first I have to learn how to make everything work, and for that I need to understand
everything as a whole at least on a somewhat basic level. For this, I will be using the Internet and
ChatGPT to learn what I have to. This isn’t the first day that I do research and testing on this, but it
was today, specifically during my education in high-school, where a teacher I was talking with about
my project advised me to keep everything I do on record. It’s not a concept I’m unfamiliar with,
because I have already done some research and projects that I documented, but I didn’t think of doing
it for this exact project until now. I must clarify that, if I refer to this project in different ways as I
advance forward, please take into consideration that this starts as a personal project because I can’t
stand not understanding some things. As of 10th of October, 2024, the title of this document is “My
Own AI Project”.​
​
All that explained, I will be putting comments inside of this very same document with the comments
feature that Google Docs offers so it’s easier for everyone, myself included, to keep track of what I’m
doing on a timeline.

I have already understood how a language model understands text, how to train one, and a bit more.
Now, I’m working on a program that will generate conversations for me in order to make the whole
process of gathering a good quality database for training.

Automated Database Maker
I think that I could call this program ADM or maybe ADMa, because it sounds better and closer to
an actual name, and I like giving human-like names to things I do. For now, I already asked
ChatGPT to give me a bunch of nouns that make reference to physical places, like mansion, castle,
pool… This was then formatted in JSON format so I can load it in my program instead of having to
write this database in the very code. The result will be on its own page so it’s easier to look at.

​ 2/11​ INGORO

https://chatgpt.com/

My Own AI Project

I learned that in JSON format, you have to, first, state objects, which would be like a variable in
Python: a name to which you can assign a value in order to have it easier when working with said
values. In this case, the JSON format I used states that the object called “noun” can be any of those
values, or, for humans, words. Because it’s text, it needs to be put in between these symbols (“, ”).
Each time you finish writing a value, whether it is text or numbers, you put a comma (,) before
putting in the next one. However, it is an error to put a comma after you have presented the last
value, the last object, etc. Comma is only for separation, and you will run into errors for not
remembering it. Because my plan is to test if I’m able to make a program to make a database faster
(instead of having to write or copy and paste all the text I need and then format it), I believe this set
of words is enough.

​ 3/11​ INGORO

My Own AI Project

Now, although I technically could do a new object inside of this same JSON file creating a new array
with the brackets symbols. That would look cleaner in my files, but I like the idea of having different
databases more. I think, outside of personal taste, that different databases will be better for when I
run into troubles with anything that’s inside of them. The next thing I need to do is a database for
adjectives that can be used with the nouns I have, like cozy, scary, big… I will then format it the
same way, and load it into my program.

After getting confirmation from ChatGPT that this format is correct, I save it as
“adjectives_database” the same way I did with “nouns_database”.

​ 4/11​ INGORO

My Own AI Project

Now, after importing these two, I will need to make a function to select a random word both in nouns
and adjectives and then put them together. For that, first I will show, because I didn’t show it before,
how I load the database.

#This will load the databases I have

with open('nouns_database.json', 'r') as file: #Tells the program to

not only open the file described to be opened and read, but also be

closed after and be named "file" for shorten

 nouns_database = json.load(file) #This is for creating a variable

that refers to loading a json file in specific, in this case our

database named "file"

with open('adjectives_database.json', 'r') as file2: #same thing as

before, but with file2 because file is already in use

 adjectives_database = json.load(file2)

I was going to do it after, but because I would have to come back to it later, I will add one more
database to it. This database will be “actions_database”. It will contain actions that can be put after
“are” in a sentence and make sense. You’ll see why in a second

​ 5/11​ INGORO

My Own AI Project

And I load this database too.

#This will load the databases I have

with open('nouns_database.json', 'r') as file: #Tells

the program to not only open the file described to be opened and read, but

also be closed after and be named "file" for shorten

​ 6/11​ INGORO

My Own AI Project

 nouns_database = json.load(file) #This

is for creating a variable that refers to loading a json file in specific, in

this case our database named "file"

with open('adjectives_database.json', 'r') as file2: #same

thing as before, but with file2 because file is already in use

 adjectives_database = json.load(file2)

with open('actions_database.json', 'r') as file3:

 actions_database = json.load(file3)

This is how all 3 databases being loaded looks like.

And now, with the databases set, I can start working on the context generator. The context generator
will use one word from the adjectives, one word from the nouns and finally one action from the
actions. This means that I will be creating a sentence that will look like this:

“In a cozy living room, where char1 and char2 are painting oranges.”

I will divide the context in two things: setting (adjective + noun) and action. To make this happen,
the code looks like this:

def generate_random_setting():

 noun = random.choice(nouns_database["noun"]) #Get

a random noun from the database

 adjective = random.choice(adjectives_database["adjective"]) #Get

a random adjective from the database

 setting = f"in a {adjective} {noun}"

#Making a variable named setting that will be an adjective and a noun

randomly selected. I use f string function to be able to put text in it

 return setting #This

gives back the result, like "in a cozy cafe"

And now I need to get a random action:

def generate_random_action():

 action = random.choice(actions_database["action"])

 return action

​ 7/11​ INGORO

My Own AI Project

This code right there gets a random action from my database. Now, we put it together like this:​

def generate_random_context():

 setting = generate_random_setting()

 action = generate_random_action()

 context = f"In a {setting}, where char1 and char2 are {action}"

 return context

In this function, I make two variables, one for each randomly generated thing. Then, I make one
more variable that gets as value a string that includes text and the variables, giving me the final
result in the format I showed before.

This code, like this, doesn’t really do much that we can see. This would be a part of the whole
ADMa, which would include a lot of different programs and stuff. But, for the funsies (and to check
if it’s all good), we can put a print line after each of these blocks to see what the program is doing.
For this matter, I will create a duplicate of this code just so I can save the original version without
the prints for when I have to use it later.

Although I encountered more issues than I thought, I managed to finish a program able to create a
random context given 3 databases (nouns, adjectives and actions). It looks like this once it’s finished:​
​

This program is simple and needs those 3 databases, but now I have the possibility to make a random
context. Now, I have a lot of options: make the program generate a new context every time it
finishes, make the program save it in json format or just text format, etc. This will be used in the
bigger and more complex program that I actually want to do, but I will be posting this so you can try
it for yourself.

​ 8/11​ INGORO

My Own AI Project

At the end of the day, the start of the next one, I uploaded, or at least I think I uploaded it to github.

I have now made a post in the Python subreddit. I explain briefly there what my project does and
give access to my repository and this document. I’m hoping people will see the disaster I made when
doing the repository and will help me to make it look like it should if done correctly. I have stated
the name of the automatic context generator to be RaCoGen, but I don’t feel like sticking with that.

Anyways, I think my next step is making this program save the contexts generated in a JSON file in
a format I can use for my database of contexts. For this, I will rewrite or copy (whatever I find
easier) the program into a new one and after texting that everything goes well, I will name it
RaCoGen 1.0.

After a few days, I have finished the second version of the context generator program. After thinking
about how to describe the process behind that, I decided that it will take less effort to explain the
code here rather than in a YouTube video. Let’s begin.

I decided to talk about the process after the process itself was done because when working on the
first version I was disturbing my workflow by stopping the coding to explain what I was doing here.
Not anymore. This time I haven’t included a single comment in my code and, in the first place, it
was because I was going to first copy and paste it here when explaining it and then I would add the
comments before releasing it on github. However, I have already released it, so it will stay that way
unless someone specifically asks for a change in that regard.

The first lines of the code are the following:​

import json

import random

import time

import sys

This time, I added the “sys” module so I can make the user close the program by using input when
asked for it. You will see what I mean later.

​ 9/11​ INGORO

https://github.com/INGOR0/random-context-generator
https://www.reddit.com/r/Python/comments/1g1e7as/random_context_generator_racogen_provisional_name/

My Own AI Project

I have updated the databases loading blocks by adding these lines:

raise ValueError("Nouns or adjectives database is empty.")

raise ValueError("Actions database is empty.")

With these, I can tell the user if the databases are empty, which is important because the context
generation gets the words to fill the blanks from them.

Now we get to my favourite part of the program: saving the contexts in a json file. In fact, it’s not
only saving them, it is formatting them so that the only thing I have to do when I want more contexts
is use the program and forget about writing or formatting on my own. Here’s how it’s done:​
​

contexts_database = 'contexts_database.json'

def save_to_database(context):

 try:

 with open(contexts_database, 'r') as contexts_file:

 existing_data = json.load(contexts_file)

 except (FileNotFoundError, json.JSONDecodeError):

 existing_data = {"contexts": []}

 if context in existing_data["contexts"]:

 print(f"Context already exists: {context}")

 else:

 existing_data["contexts"].append(context)

 with open(contexts_database, 'w') as contexts_file:

 json.dump(existing_data, contexts_file, indent=4)

 print(f"Context: {context}")

In this block, I first create a variable just so I don’t have to write the json file every time I want to
reference it. Then I define a function:

​ 10/11​ INGORO

My Own AI Project

This function tries to open a file named contexts_database.json and, if nothing is found, then it
creates one. After that, it checks if the context generated is already saved and, if it is, then it doesn’t
save it so I don’t have duplicates. It also stops if it encounters errors. If the context is already there, it
will be printed as “Context already exists: ___”; if not, then it will be printed as “Context: ___”.

The next part is more dense and is the part that cost me more work. Let’s go into it:​

def generate_by_time():

def generate_certain_number():

def continue_generating():

def use_the_program():

def program_started():

These functions are made in order to make the code cleaner and easier to expand. It is not necessary
to do this because I could always just use “if, else” statements to do a lot of things, but by creating a
function I only have to do it once.

generate_by_time
This function is referenced when the user chooses to use time as the measuring method for the
program to work. When you choose this method, you will be asked to introduce a valid number in
seconds, and that number will be the number of seconds that the program will be generating contexts
for.

It works with a “try, except” method.

My Own AI Project © 2024 by INGORO is licensed under CC BY-NC 4.0

​ 11/11​ INGORO

https://docs.google.com/document/d/1RzmRTRMYWoDTSx2ddamlSiGY7xL__hYuhZHebURhIj4/edit
https://x.com/INGORO_
https://creativecommons.org/licenses/by-nc/4.0/?ref=chooser-v1

	
	For context
	Automated Database Maker
	generate_by_time

