Adopted Factorial and New In-Situ Micro-Designs forStimulation of Matrix Acidizing of Carbonate Reservoir Rocks

By Aram Abdulah Abdulrahman

لينكى تويزينهوه:

https://doi.org/10.3390/app13031752

Abstract

Matrix acidizing has been developed in the petroleum industry for improving petroleum well productivity and minimizing near-wellbore damage. Mud acid (HF: HCl) has gained attractiveness in improving the porosity and permeability of reservoir formation. However, there are several challenges facing the use of mud acid, comprising its corrosive nature, high pH value, formation of precipitates, high reaction rate and quick consumption. Therefore, different acids have been developed to solve these problems, including organic-HF or HCl acids. Some of these acid combinations proved their effectiveness in being alternatives to mud acid in reservoir rock acidizing. The current research deals with a new acid combination based on Hydrochloric-Oxalic acids for acidizing carbonate core samples recovered from Qamchuqa Formation in Kirkuk oilfield, northern Iraq. A new in-situ micro-model adopted laboratory technique is utilized to study the microscale alteration and evolution of pore spaces, dissolved grains and identification of matrix acidizing characteristics. The in-situ micro-model is based on the injection of an identical dose of different concentrations of the new acid combination into thin section samples under an optical light microscope. The adopted procedure aims to provide unique and rapid information regarding the potential for texture and porosity modification that can be caused by the acidizing stimulation procedure. In connection, solubility tests for the untreated and treated reservoir core samples and the density of the combined acids after treatment are conducted based on designed experiments using response surface methodology (RSM). The effect of acid concentration [12% HCI: Oxalic acid (3.8–8.8%)] and acidizing temperature (from ambient to 78.8 C) on the solubility percentage of the samples and percentage increase in the combined acid density after acidizing were optimized and modeled. The obtained results confirm that the optimum dissolution of the core samples took place using 12% HCl:3.2% Oxalic acid with an optimum solubility (%) of the carbonate core rock of 53.78% at 21.7 C, while the optimum increase in density (%) of the combined acids was 1.54% at 78.3 C. The promising results could be employed for matrix acidizing of carbonate reservoir rocks for other oilfields. Keywords: matrix acidizing; simulation; optimization; optical microscopy; in-situ micro-model; petrographic analysis; pore area; solubility; RSM

يوخته

ترشکردنی ماتریکس له پیشهسازی نموتدا پهرهی پیدراوه بر باشترکردنی نموت به همهینانی بیرهکان و کهمکردنهوهی زیانهکانی نزیک له بیرهکان. ترشی قور (HF: HCl) سه نجراکیشی به دهستهیناوه له باشترکردنی کونیله یی و رژانی دروستبوونی خهزنهکان. به لام چهندین... ئه و ته حددایانه ی که رووبه رووی به کار هینانی ترشی قور دهبنه و ۵۰ پیکهاتووه له

سروشتی خرایبوونی، به های بهرزی pH، دروستبوون له رهشبووهکان، ریزهی کارلیککردنیکی بهرز و به کارهینانی خیرا. بۆیە ترشە جیاواز مکان بوونەتە... یەر مى بپدر او م بۆ چار مسەر کردنى ئەم كېشانه، لەوانەش ترشە ئۆرگانیک-HF يان HCl. ههندیک لهم تیکهله ترشهلوکانه کاریگهری خویان سهلماند له بوون به بهدیل بو ترشی قور له ترشکردنی بهردی خهزنهکاندا. که تویزینه و مکانی ئیستا باس له نیکه لمیه کی نویی ترش ده کهن که لهسه ر بنه مای ترشه هایدر و کلوریک-ئوکسالیکه کانه بو تر شکر دن نمو نهی ناو مکی کار بو ناتی له بیکهاتهی قهمجو قه له کیلگهی نهو تی کهر کوک له باکو و ری عیر اق و مرگیر ایهوه. ئه تەكنىكۆپكى نوپىي تاقىگەيىي وەرگىراو لە مۆدىلى بچووك لە شوينى خۆيدا بەكاردەھىنىرىت بۆ لىكۆلىنەوە لە گۆرانى مایکرۆپێوەر و پەرەسەندنى بۆشايى كونىلەكان، دانەوێڵە تواوەكان و ناسىنەوەي تايبەتمەندىەكانى ترشكردنى ماتريكس. مایکر ق مؤدیّلی له شویّنی خوّیدا لهسهر بنهمای دور زی لیّدانی ژومیّکی هاوشیّوهی چربی جیاوازی... تیکه لکردنی ترشی نوی بۆ نمونەي بەشە تەنكەكان لە ژېر مايكرۆسكۆپى رووناكى بيناپى. ئەو وەرگيراوانە رېكارەكە ئامانجيەتى زانيارى ناوازە و خيرا سمبارمت به توانای پيکهاته و... گورينی کونيلميی که دهتوانيت به هوی ريکاری هاندانی ترشکردنموه بيت. له یمیوهندیدا، تو او هیی تاقیکر دنموهکان بو نمونهکانی ناو مکی خهزنهی چار هسمرنهکر او و چار هسمر کر او و چری ترشه تیکه لهکان دوای چارهسمر کردن به پشتبهستن به تاقیکردنهوه دیزاینکراوهکان به بهکار هینانی شنوازی رووکاری وه لامدانهوه ئهنجام دەدرين (RSM). كاريگەرى چړيي ترش [12% HCI: ترشى ئۆكسالىك (3.8-8.8%)] و بلەي گەرمى ترشكردن (لە دەوروبەر ەو ، بۆ (C 78.8) لەسەر رېزەي تواوەيى نمونەكان و زيادبوونى رېزەي سەدى لە... چړى ترشى تېكەلاو دواى ترشکردن باشتر کرا و مودیل کرا. ئەنجامە بەدەست ھینراوەكان پشتراستى دەكەنەوە كە تواوەيى گونجاوى نمونەكانى ناوەكى به به کار هینانی 12% HCI:3.2% ترشی ئو کسالیک لهگهل ترشی ئو کسالیک روویدا تواوهیی گونجاو (%)ی بهردی ناوه کی كاربۆناتى 53.78% له يلهى گەرمى 21.7 C)، له كاتتكدا زيادبوونى گونجاو له چرى (%)ى ترشه تتكه لهكان 1.54% بوو له يلهي گهرمي 78.3 C. دوتو انريت ئەنجامە ئوميدبەخشەكان بەكاربهينرين بۆ ترشكردني ماتريكسى بەردى خەزنەي كاربۆنات بۆ كېلگە نەر تېپەكانى تر .

الملخص

تم تطوير عملية تحميض المصفوفة في صناعة البترول لتحسين البترول إنتاجية جيدة وتقليل الأضرار القريبة من حفرة البئر. اكتسب حمض الطين (HF: HCl) جاذبية في تحسين مسامية ونفاذية تكوين الخزان. ومع ذلك ، هناك العديد

التحديات التي تواجه استخدام حمض الطين ، بما في ذلك طبيعته المسببة للتآكل ، وقيمة الأس الهيدروجيني العالية ، والتكوينم من الرواسب ومعدل التفاعل العالي والاستهلاك السريع. لذلك ، كانت الأحماض المختلفة تم تطويره لحل هذه المشكلات ، بما في ذلك أحماض HF العضوية أو HCl. بعض هذه التركيبات الحمضية أثبتت فعاليتها في كونها بدائل لحمض الطين في تحمض صخور الخزان. ال يتعامل البحث الحالي مع تركيبة حمض جديدة تعتمد على أحماض الهيدروكلوريك - الأوكساليك للتحميض عينات قلب كربونات تم استعادتها من تكوين قمشوقة في حقل نفط كركوك شمال العراق. أ يتم استخدام تقنية المختبر الجديدة المعتمدة في النموذج الدقيق في الموقع لدراسة التغيير المجهري وتطور الفراغات المسامية والحبوب المذابة وتحديد خصائص تحمض المصفوفة. يعتمد النموذج الدقيق في الموقع على حقن جرعة متطابقة بتركيزات مختلفة من

تركيبة الحمض الجديدة في عينات مقطعية رقيقة تحت مجهر ضوئي ضوئي. المعتمد يهدف الإجراء إلى توفير معلومات فريدة وسريعة فيما يتعلق بإمكانية النسيج و تعديل المسامية الذي يمكن أن يحدث بسبب إجراء التحفيز الحمضي. في اتصال مع الذوبان

اختبارات لعينات الخزان غير المعالجة والمعالجة وكثافة الأحماض المجمعة بعد إجراء المعالجة بناءً على تجارب مصممة باستخدام منهجية سطح الاستجابة (RSM). تأثير تركيز الحمض [12٪ حمض الهيدروكلوريك: حمض الأكساليك (3.8-8.8٪)] ودرجة الحموضة (من المحيط إلى 78.8 درجة مئوية) على نسبة الذوبان في العينات وزيادة النسبة المئوية في تم تحسين ونمذجة الكثافة الحمضية المجمعة بعد التحميض. النتائج التي تم الحصول عليها تؤكد أن الانحلال الأمثل العينات الأساسية حدث باستخدام 12٪ حمض الهيدروكلوريك: 3.2٪ حمض الأكساليك مع الذوبان الأمثل (٪) للصخور الأساسية الكربونية بنسبة 53.78٪ عند 21.7 درجة مئوية ، بينما الزيادة المثلى في كثافة (٪) الأحماض المجمعة 1.54٪ عند 78.3 درجة مئوية. يمكن توظيف النتائج الواعدة لتحمض مصفوفة صخور مكامن الكربونات لحقول النفط الأخرى.

About Soran University

Soran University (SUN) is located in the city of Soran, which is about a two-hour drive north-east of Erbil (Arbil, Hewlér), the capital of the Kurdistan Region of Iraq (KRIQ). The city is flanked by the famous Korek, Zozik, Henderén, and Biradost mountains. The medieval mountain village of Rewandiz (Rawanduz, العرف النحز) is a stone-cast away, and the two cities share this lovely, harmonious upland. While waiting for its green, environmentally friendly building to be erected on a hilltop overlooking the cities of Soran and Rewandiz, its existing city campus has been meticulously set out to accommodate the lovely natural landscape. The new campus will be the first of its type, being walkable, balanced, powered by renewable energy, and compliant with all international environmental regulations. There are 5 Faculties in SUN; Faculty of Arts (FAAR), Faculty of Science (FSCN), Faculty of Education (FEDU), Faculty of Law, Political Science, and Management (FLAW/PSM), and Faculty of Engineering (FENG). Also, there is SUN research centre. Moreover, at SUN, there is a Language Center. SUN signed many Memoranda of Understandings (MoU) with many International Universities.

How to get here

Soran University (SUN) is located in the heart of the city of Soran. The main city campus is easily found on Google Maps for direction.